"Gromov-Witten invariants of compact Calabi-Yau orbifolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 (section 'articles' updated) |
||
4번째 줄: | 4번째 줄: | ||
==articles== | ==articles== | ||
+ | * Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07270 | ||
* Schaug, Andrew. ‘The Gromov-Witten Theory of Borcea-Voisin Orbifolds and Its Analytic Continuations’. arXiv:1506.07226 [math], 23 June 2015. http://arxiv.org/abs/1506.07226. | * Schaug, Andrew. ‘The Gromov-Witten Theory of Borcea-Voisin Orbifolds and Its Analytic Continuations’. arXiv:1506.07226 [math], 23 June 2015. http://arxiv.org/abs/1506.07226. | ||
* Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078. | * Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078. |
2016년 5월 1일 (일) 22:37 판
articles
- Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07270
- Schaug, Andrew. ‘The Gromov-Witten Theory of Borcea-Voisin Orbifolds and Its Analytic Continuations’. arXiv:1506.07226 [math], 23 June 2015. http://arxiv.org/abs/1506.07226.
- Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078.