"Gromov-Witten invariants of compact Calabi-Yau orbifolds"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
(section 'expositions' added)
12번째 줄: 12번째 줄:
 
* Schaug, Andrew. ‘The Gromov-Witten Theory of Borcea-Voisin Orbifolds and Its Analytic Continuations’. arXiv:1506.07226 [math], 23 June 2015. http://arxiv.org/abs/1506.07226.
 
* Schaug, Andrew. ‘The Gromov-Witten Theory of Borcea-Voisin Orbifolds and Its Analytic Continuations’. arXiv:1506.07226 [math], 23 June 2015. http://arxiv.org/abs/1506.07226.
 
* Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078.
 
* Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078.
 +
 +
== expositions ==
 +
 +
* R. Pandharipande, R. P. Thomas, Notes on the proof of the KKV conjecture, arXiv:1411.0896 [math.AG], November 04 2014, http://arxiv.org/abs/1411.0896

2016년 5월 9일 (월) 18:55 판

Katz-Klemm-Vafa conjecture for K3 surfaces

  • KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms


related items


articles

  • R. Pandharipande, R. P. Thomas, The Katz-Klemm-Vafa conjecture for K3 surfaces, arXiv:1404.6698 [math.AG], April 27 2014, http://arxiv.org/abs/1404.6698
  • Zhengyu Zong, Equivariant Gromov-Witten Theory of GKM Orbifolds, arXiv:1604.07270 [math.AG], April 25 2016, http://arxiv.org/abs/1604.07270
  • Schaug, Andrew. ‘The Gromov-Witten Theory of Borcea-Voisin Orbifolds and Its Analytic Continuations’. arXiv:1506.07226 [math], 23 June 2015. http://arxiv.org/abs/1506.07226.
  • Shen, Yefeng, and Jie Zhou. ‘Ramanujan Identities and Quasi-Modularity in Gromov-Witten Theory’. arXiv:1411.2078 [hep-Th], 7 November 2014. http://arxiv.org/abs/1411.2078.

expositions