"Hecke L-functions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
19번째 줄: 19번째 줄:
 
==Dirichlet L-functions==
 
==Dirichlet L-functions==
 
* {{수학노트|url=디리클레_L-함수}}
 
* {{수학노트|url=디리클레_L-함수}}
 +
 +
 +
==zeta integral==
 +
* $f\in \mathcal{S}(\mathbb{A})$
 +
* $\chi$ : character of $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$ with finite image
 +
* define
 +
$$
 +
\zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x
 +
$$
 +
;thm
 +
Let $\chi\neq 1$. The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an entire function on $\mathbb{C}$. One has
 +
$$
 +
\zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s)
 +
$$
  
  

2014년 7월 6일 (일) 07:28 판

introduction

In the early 20th century, Erich Hecke attempted to find a further generalization of the Dirichlet L-series and the Dedekind zeta function. In 1920, he introduced the notion of a Grossencharakter, an ideal class character of a number field, and established the analytic continuation and functional equation of its associated L-series, the Hecke L-series. In 1950, John Tate, following the suggestion of his advisor, Emil Artin, recast Hecke's work. Tate provided a more elegant proof of the functional equation of the Hecke L-series by using Fourier analysis on the adeles and employing a reformulation of the Grossencharakter in terms of a character on the ideles. Tate's work now is generally understood as the GL(1) case of automorphic forms


Dirichlet L-functions


zeta integral

  • $f\in \mathcal{S}(\mathbb{A})$
  • $\chi$ : character of $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$ with finite image
  • define

$$ \zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x $$

thm

Let $\chi\neq 1$. The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an entire function on $\mathbb{C}$. One has $$ \zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s) $$


related items


expositions

  • Alayont, Adelic approach to Dirichlet L-function
  • [Leahy2010] James-Michael Leahy, An introduction to Tate's Thesis
  • Herz, Carl, Stephen William Drury, and Maruti Ram Murty. 1997. Harmonic Analysis and Number Theory: Papers in Honour of Carl S. Herz : Proceedings of a Conference on Harmonic Analysis and Number Theory, April 15-19, 1996, McGill University, Montréal, Canada. American Mathematical Soc.