"Dimer model"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 55번째 줄: | 55번째 줄: | ||
*  energy and weight function<br><math>w(e)=\exp (-\frac{\epsilon(e)}{T})</math><br>  | *  energy and weight function<br><math>w(e)=\exp (-\frac{\epsilon(e)}{T})</math><br>  | ||
*  partition function<br><math>Z_{\Gamma}=\sum_{D\subset \Gamma} \prod_{e\in D} w(e)</math><br>  | *  partition function<br><math>Z_{\Gamma}=\sum_{D\subset \Gamma} \prod_{e\in D} w(e)</math><br>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>fH</h5>  | ||
| + | |||
| + | |||
| + | |||
| + | P(z_1,z_2,w) if weights are positive real., then P=0 is a Harnack curve of genus  | ||
| + | |||
| + | g=|int(N)|  | ||
| + | |||
| + | P(z_0,z_2)=0 is harnack if the amoeba map is at most 2-to-1.  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| 166번째 줄: | 186번째 줄: | ||
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>  | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>  | ||
| − | *   | + | * Cimasoni, David, 와/과Nicolai Reshetikhin. 2007. “Dimers on surface graphs and spin structures. II”. <em>0704.0273</em> (4월 2). doi:doi:10.1007/s00220-008-0488-3. http://arxiv.org/abs/0704.0273.  | 
* [http://dx.doi.org/10.1103/PhysRevE.75.040105 Exact solution of close-packed dimers on the kagome lattice]<br>  | * [http://dx.doi.org/10.1103/PhysRevE.75.040105 Exact solution of close-packed dimers on the kagome lattice]<br>  | ||
** Fa Wang, F. Y. Wu, 2006  | ** Fa Wang, F. Y. Wu, 2006  | ||
2011년 11월 5일 (토) 13:52 판
introduction
- relation to Bethe ansatz http://staff.science.uva.nl/~nienhuis/tiles.pdf
 - domino tiling
 
basic notions
- dimer configurations
 - set of dimer configurations
 - partition function
 - Kasteleyn matrix
 - height function
 - spectral curve
 - surface tension
 
physics motivation
- dimer configuration can be considered as the covering of the graph by pairs of fermions connected by an edge
 
Termperley equivalence
- spanning trees on \gamma rooted at x
 - dimers on D(\gamma)
 
Domino tiling and height function
- bipartite graph
 
energy and weight systems
- define a weight function on the edges of the graph \gamma
\(w:E(\Gamma)\to \mathbb{R}_{\geq 0}\) - For a dimer configuration D,
\(w(D)=\prod_{e\in D} w(e)\) - energy function
\(\epsilon:E(\Gamma)\to \mathbb{R}\) - For a dimer configuration D,
\(\epsilon(D)=\sum_{e\in D} \epsilon(e)\) - energy and weight function
\(w(e)=\exp (-\frac{\epsilon(e)}{T})\) - partition function
\(Z_{\Gamma}=\sum_{D\subset \Gamma} \prod_{e\in D} w(e)\) 
fH
P(z_1,z_2,w) if weights are positive real., then P=0 is a Harnack curve of genus
g=|int(N)|
P(z_0,z_2)=0 is harnack if the amoeba map is at most 2-to-1.
하위페이지
memo
- http://www.math.brown.edu/~rkenyon/talks/
 - http://www.umich.edu/~mctp/SciPrgPgs/events/2006/2006glsc/talks/hanany.pdf
 - http://www.lif.univ-mrs.fr/~fernique/info/slides_csr.pdf
 
history
encyclopedia
- http://en.wikipedia.org/wiki/Domino_tiling
 - http://en.wikipedia.org/wiki/Lozenge
 - http://en.wikipedia.org/wiki/Gaussian_free_field
 - http://en.wikipedia.org/wiki/
 - http://www.scholarpedia.org/
 - http://www.proofwiki.org/wiki/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
books
- Statistical mechanics
 - 2010년 books and articles
 - http://gigapedia.info/1/statistical+mechanics
 - http://gigapedia.info/1/dimer
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
links
expositions
- http://www.ams.org/bookstore?fn=20&arg1=genint&item=HAPPENING-7
 - dimer models for mathematicians
 - Dimers, Amoebae and Limit shapes
 - Dimers, the complex burgers equation, and curves inscribed in polygonsl
 - The dimer model Richard Kenyon,
 - Dimer Problems Richard Kenyon, 2005
 - Gaussian free fields for mathematiciansn Scott Sheffield, 2003
 - An introduction to the dimer model Richard Kenyon, 2003
 - The dimer model in Statistical mechanics
 
- Dimers and Dominos James Propp, 1992
 - pictures
 
articles
- Cimasoni, David, 와/과Nicolai Reshetikhin. 2007. “Dimers on surface graphs and spin structures. II”. 0704.0273 (4월 2). doi:doi:10.1007/s00220-008-0488-3. http://arxiv.org/abs/0704.0273.
 - Exact solution of close-packed dimers on the kagome lattice
- Fa Wang, F. Y. Wu, 2006
 
 - [1]http://www.physics.neu.edu/faculty/wu%20files/pdf/Wu217_PRE74_020104%28R%29.pdf
 - Limit shapes and the complex burgers equation
- Richard Kenyon, Andrei Okounkov, 2005-7
 
 - Richard Kenyon, Andrei Okounkov, 2005-7
 - Planar dimers and Harnack curves
- Richard Kenyon, Andrei Okounkov, 2003-11
 
 - Dimers and Amoebae
- Richard Kenyon, Andrei Okounkov, Scott Sheffield, 2003-11
 
 - Dimers, Tilings and Trees
 - A variational principle for domino tilings
- Cohn H., Kenyon R., Propp J. (2001), J. Amer. Math.Soc., 14, no.2, 297-346
 
 
- Richard Kenyon, The Annals of Probability Vol. 28, No. 2 (Apr., 2000), pp. 759-795
 
- The asymptotic determinant of the discrete Laplacian
- Richard Kenyon, Acta Mathematica Volume 185, Number 2, 239-286, 2000
 
 - W. P. Thurston, Conway’s tiling groups, Amer. Math. Monthly 97 (1990), 757–773.
 - Kasteleyn, P. W. 1963. Dimer Statistics and Phase Transitions. Journal of Mathematical Physics 4, no. 2: 287. doi:10.1063/1.1703953.
 
- Statistical Mechanics of Dimers on a Plane Lattice
- Michael E. Fisher , Phys. Rev. 124, 1664–1672 (1961)
 
 - The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice
- Kasteleyn, P. W. (1961), Physica 27 (12): 1209–1225
 
 - http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/10.1007/978-0-8176-4842-8_20
 
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage