"Heisenberg spin1/2 XXX chain"의 두 판 사이의 차이
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction</h5> | |
* XXX spin chain can be solved by [[Bethe ansatz]] | * XXX spin chain can be solved by [[Bethe ansatz]] | ||
5번째 줄: | 5번째 줄: | ||
− | + | ==review on spin system</h5> | |
* [[spin system and Pauli exclusion principle|spin system]]<br> | * [[spin system and Pauli exclusion principle|spin system]]<br> | ||
21번째 줄: | 21번째 줄: | ||
− | + | ==summary</h5> | |
* Hamiltonian of XXX spin chain with anisotropic parameter <math>\Delta=1</math><br><math>\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \sigma_j^z \sigma_{j+1}^z+1)</math><br> | * Hamiltonian of XXX spin chain with anisotropic parameter <math>\Delta=1</math><br><math>\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \sigma_j^z \sigma_{j+1}^z+1)</math><br> | ||
33번째 줄: | 33번째 줄: | ||
− | + | ==wavefunction amplitude</h5> | |
* amplitudes <math>A(P)</math> satisfies<br><math>A_{P}=\sigma_{P}\prod_{1\leq i< j\n}s_{P_{j}P_{i}}</math>, where <math>\sigma_{P}</math> = sign of the permutation<br> | * amplitudes <math>A(P)</math> satisfies<br><math>A_{P}=\sigma_{P}\prod_{1\leq i< j\n}s_{P_{j}P_{i}}</math>, where <math>\sigma_{P}</math> = sign of the permutation<br> | ||
42번째 줄: | 42번째 줄: | ||
− | + | ==Bethe ansatz equation</h5> | |
<math>s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-2e^{ik_l}+ e^{ik_l+ik_j}</math> | <math>s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-2e^{ik_l}+ e^{ik_l+ik_j}</math> | ||
124번째 줄: | 124번째 줄: | ||
− | + | ==eigenvalues</h5> | |
130번째 줄: | 130번째 줄: | ||
− | + | ==emptiness formation probability</h5> | |
138번째 줄: | 138번째 줄: | ||
− | + | ==near neighbor correlations</h5> | |
148번째 줄: | 148번째 줄: | ||
− | + | ==history</h5> | |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
156번째 줄: | 156번째 줄: | ||
− | + | ==related items</h5> | |
* [[six-vertex model and Quantum XXZ Hamiltonian]] | * [[six-vertex model and Quantum XXZ Hamiltonian]] | ||
177번째 줄: | 177번째 줄: | ||
− | + | ==books</h5> | |
190번째 줄: | 190번째 줄: | ||
− | + | ==expositions</h5> | |
* [http://pos.sissa.it/archive/conferences/038/006/Solvay_006.pdf XXX Spin Chain: from Bethe Solution to Open Problems]<br> <br> | * [http://pos.sissa.it/archive/conferences/038/006/Solvay_006.pdf XXX Spin Chain: from Bethe Solution to Open Problems]<br> <br> | ||
219번째 줄: | 219번째 줄: | ||
− | + | ==question and answers(Math Overflow)</h5> | |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
228번째 줄: | 228번째 줄: | ||
− | + | ==blogs</h5> | |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
239번째 줄: | 239번째 줄: | ||
− | + | ==experts on the field</h5> | |
* http://arxiv.org/ | * http://arxiv.org/ | ||
247번째 줄: | 247번째 줄: | ||
− | + | ==links</h5> | |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] |
2012년 10월 28일 (일) 13:05 판
==introduction
- XXX spin chain can be solved by Bethe ansatz
==review on spin system
- Pauli matrices (해밀턴의 사원수 참조)
\(\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} \)
\(\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} \)
\(\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\)
- raising and lowering operators
\(\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})\)
\(\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\)
\(\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\)
\([\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}\)
\(h=\frac{\sigma_{i}\cdot\sigma_{j}+1}{2}\) acts as the permutation operator
==summary
- Hamiltonian of XXX spin chain with anisotropic parameter \(\Delta=1\)
\(\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \sigma_j^z \sigma_{j+1}^z+1)\) - two body scattering term
\(s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-2e^{ik_l}+ e^{ik_l+ik_j}\) - phase shift term \(\theta(p,q)\)
\(\exp(-i\theta(k_j,k_l))=\frac{s_{l,j}}{s_{j,l}}=\frac{1-2\Delta e^{ik_j}+e^{i(k_j+k_l)}}{1-2\Delta e^{ik_l}+e^{i(k_j+k_l)}}\) - equation satisfied by wave numbers
\(\exp(ik_jL)=(-1)^{n-1}\prod_{l=1, l\neq j}^{n}\frac{s_{l,j}}{s_{j,l}}=(-1)^{n-1}\prod_{l=1}^{L}\exp(-i\theta(k_j,k_l))\) - fundamental equation
\(k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)\)
==wavefunction amplitude
- amplitudes \(A(P)\) satisfies
\(A_{P}=\sigma_{P}\prod_{1\leq i< j\n}s_{P_{j}P_{i}}\), where \(\sigma_{P}\) = sign of the permutation - \(A(312)\) corresponds to the permutation \(1\to3, 2\to1, 3\to2\)
- n=2 case
\(A(12)=s_{21}\)
\(A(21)=-s_{12}\) - n=3 case
\(A(123)=s_{21}s_{31}s_{32}\)
\(A(312)=s_{13}s_{23}s_{21}\)
\(A(231)=s_{32}s_{12}s_{13}\)
==Bethe ansatz equation
\(s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-2e^{ik_l}+ e^{ik_l+ik_j}\)
\(\exp(ik_jL)=(-1)^{n-1}\prod_{l=1, l\neq j}^{n}\frac{s_{l,j}}{s_{j,l}}\)
n=1
\(\exp(ik_jL)=1\)
n=2
\(\exp(ik_1L)=-\frac{s_{2,1}}{s_{1,2}}=-\frac{1-2e^{ik_1}+ e^{ik_1+ik_2}}{1-2e^{ik_2}+ e^{ik_1+ik_2}}\)
\(\exp(ik_2L)=-\frac{s_{1,2}}{s_{2,1}}=-\frac{1-2e^{ik_2}+ e^{ik_1+ik_2}}{1-2e^{ik_1}+ e^{ik_1+ik_2}}\)
n=3
\(\exp(ik_1L)=\frac{s_{2,1}s_{3,1}}{s_{1,2}s_{1,3}}\)
\(\exp(ik_2L)=\frac{s_{1,2}s_{3,2}}{s_{2,1}s_{2,3}}\)
\(\exp(ik_3L)=\frac{s_{1,3}s_{2,3}}{s_{3,1}s_{3,2}}\)
n denote the number of up spins
n=0 analysis
n=1 analysis
ansatz \(a(x)=e^{ikx}\)
derive difference equations
compute eigenvalue \(E=L-2+2(\cos k)\)
boundary condition \(a(x+L)=a(x)\) implies \(e^{ikL}=1\)
n=2 analysis
ansatz \(a(x,y)=A(12)e^{ik_1x+ik_2y}+A(21)e^{ik_2x+ik_1y}\)
derive difference equations to get two-body scattering term
compute eigenvalue \(E=L-4+2(\cos k_1+\cos k_2)\)
use two-body scattering condition \(a(x,x)+a(x+1,x+1)=2a(x,x+1)\) to get \(A(12)/A(21)=-s_{2,1}/s_{1,2}\)
boundary condition \(a(y,x+L)=a(x,y)\) imples \(A(12)/A(21)=e^{ik_1L}\)
n=3 analysis
ansatz \(a(x,y,z)=A(123)e^{ik_1x+ik_2y+ik_3z}+A(132)e^{ik_1x+ik_3y+ik_2z}+\cdots = \sum _{P}A(P)e^{iP\cdot x}\)
derive difference equations. we get several of them
e.g.
\(a(x,x,z)+a(x+1,x+1,z)=2a(x,x+1,z)\)
compute the eigenvalue \(E=L-4+2(\cos k_1+\cos k_2+\cos k_3)\)
use two-body scattering condition \(a(x,x)+a(x+1,x+1)=2a(x,x+1)\) to get \(A(12)/A(21)=-s_{2,1}/s_{1,2}\)
==eigenvalues
==emptiness formation probability
==near neighbor correlations
==history
==related items
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
==books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
==expositions
- XXX Spin Chain: from Bethe Solution to Open Problems
- Nepomechie, Rafael I. 1998. A Spin Chain Primer. hep-th/9810032 (October 5). http://arxiv.org/abs/hep-th/9810032.
- Lin, Shao-shiung, and Shi-shyr Roan. 1995. Bethe Ansatz for Heisenberg XXX Model. cond-mat/9509183 (October 2). http://arxiv.org/abs/cond-mat/9509183.
articles
- Takahashi, Minoru. 2010. Correlation function and simplified TBA equations for XXZ chain. 1101.0035 (December 29). http://arxiv.org/abs/1101.0035.
- H.E.Boos, V.E.Korepin, Quantum correlations and number theory , 2002
- Evaluation of Integrals Representing Correlations in XXX Heisenberg Spin Chain
- H.E.Boos, V.E.Korepin, 2001
- H.E.Boos, V.E.Korepin, 2001
- Quantum spin chains and Riemann zeta function with odd arguments
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
==question and answers(Math Overflow)
==blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
==experts on the field
==links