"Heisenberg spin1/2 XXX chain"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
166번째 줄: 166번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
+
==encyclopedia==
  
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
200번째 줄: 200번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
+
==articles==
  
 
* Takahashi, Minoru. 2010. Correlation function and simplified TBA equations for XXZ chain. 1101.0035 (December 29). http://arxiv.org/abs/1101.0035.
 
* Takahashi, Minoru. 2010. Correlation function and simplified TBA equations for XXZ chain. 1101.0035 (December 29). http://arxiv.org/abs/1101.0035.

2012년 10월 28일 (일) 17:27 판

introduction

 

review on spin system

  • Pauli matrices (해밀턴의 사원수 참조)
    \(\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} \)
    \(\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} \)
    \(\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\)
  • raising and lowering operators
    \(\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})\)
    \(\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\)
    \(\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\)
    \([\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}\)

 

\(h=\frac{\sigma_{i}\cdot\sigma_{j}+1}{2}\) acts as the permutation operator

 

 

summary

  • Hamiltonian of XXX spin chain with  anisotropic parameter \(\Delta=1\)
    \(\hat H = \sum_{j=1}^{L} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \sigma_j^z \sigma_{j+1}^z+1)\)
  • two body scattering term
    \(s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-2e^{ik_l}+ e^{ik_l+ik_j}\)
  • phase shift term \(\theta(p,q)\)
    \(\exp(-i\theta(k_j,k_l))=\frac{s_{l,j}}{s_{j,l}}=\frac{1-2\Delta e^{ik_j}+e^{i(k_j+k_l)}}{1-2\Delta e^{ik_l}+e^{i(k_j+k_l)}}\)
  • equation satisfied by wave numbers
    \(\exp(ik_jL)=(-1)^{n-1}\prod_{l=1, l\neq j}^{n}\frac{s_{l,j}}{s_{j,l}}=(-1)^{n-1}\prod_{l=1}^{L}\exp(-i\theta(k_j,k_l))\)
  • fundamental equation
    \(k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)\)

 

 

wavefunction amplitude

  • amplitudes \(A(P)\) satisfies
    \(A_{P}=\sigma_{P}\prod_{1\leq i< j\n}s_{P_{j}P_{i}}\), where \(\sigma_{P}\) = sign of the permutation
  • \(A(312)\) corresponds to the permutation \(1\to3, 2\to1, 3\to2\)
  • n=2 case
    \(A(12)=s_{21}\)
    \(A(21)=-s_{12}\)
  • n=3 case
    \(A(123)=s_{21}s_{31}s_{32}\)
    \(A(312)=s_{13}s_{23}s_{21}\)
    \(A(231)=s_{32}s_{12}s_{13}\)
     

 

Bethe ansatz equation

\(s_{j,l}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-2e^{ik_l}+ e^{ik_l+ik_j}\)

\(\exp(ik_jL)=(-1)^{n-1}\prod_{l=1, l\neq j}^{n}\frac{s_{l,j}}{s_{j,l}}\)

n=1

\(\exp(ik_jL)=1\)

n=2

\(\exp(ik_1L)=-\frac{s_{2,1}}{s_{1,2}}=-\frac{1-2e^{ik_1}+ e^{ik_1+ik_2}}{1-2e^{ik_2}+ e^{ik_1+ik_2}}\)

\(\exp(ik_2L)=-\frac{s_{1,2}}{s_{2,1}}=-\frac{1-2e^{ik_2}+ e^{ik_1+ik_2}}{1-2e^{ik_1}+ e^{ik_1+ik_2}}\)

 

n=3

\(\exp(ik_1L)=\frac{s_{2,1}s_{3,1}}{s_{1,2}s_{1,3}}\)

\(\exp(ik_2L)=\frac{s_{1,2}s_{3,2}}{s_{2,1}s_{2,3}}\)

\(\exp(ik_3L)=\frac{s_{1,3}s_{2,3}}{s_{3,1}s_{3,2}}\)

 

n denote the number of up spins

 

n=0 analysis

 

n=1 analysis

ansatz \(a(x)=e^{ikx}\)

derive difference equations

compute eigenvalue \(E=L-2+2(\cos k)\)

boundary condition \(a(x+L)=a(x)\) implies \(e^{ikL}=1\)

 

n=2 analysis

ansatz \(a(x,y)=A(12)e^{ik_1x+ik_2y}+A(21)e^{ik_2x+ik_1y}\)

derive difference equations to get two-body scattering term

compute eigenvalue \(E=L-4+2(\cos k_1+\cos k_2)\)

use two-body scattering condition \(a(x,x)+a(x+1,x+1)=2a(x,x+1)\) to get \(A(12)/A(21)=-s_{2,1}/s_{1,2}\)

boundary condition \(a(y,x+L)=a(x,y)\) imples \(A(12)/A(21)=e^{ik_1L}\)

 

 

n=3 analysis

ansatz \(a(x,y,z)=A(123)e^{ik_1x+ik_2y+ik_3z}+A(132)e^{ik_1x+ik_3y+ik_2z}+\cdots = \sum _{P}A(P)e^{iP\cdot x}\)

derive difference equations. we get several of them

e.g.

\(a(x,x,z)+a(x+1,x+1,z)=2a(x,x+1,z)\)

compute the eigenvalue \(E=L-4+2(\cos k_1+\cos k_2+\cos k_3)\)

use two-body scattering condition \(a(x,x)+a(x+1,x+1)=2a(x,x+1)\) to get \(A(12)/A(21)=-s_{2,1}/s_{1,2}\)

 

 

eigenvalues

 

 

emptiness formation probability

 

 

 

near neighbor correlations

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links