"Kashaev's volume conjecture"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
3번째 줄: | 3번째 줄: | ||
* The hyperbolic volume of a knot complement can be calculated using the Jones polynimials of the ca<br> | * The hyperbolic volume of a knot complement can be calculated using the Jones polynimials of the ca<br> | ||
* SU(2) connections on S^3-K should be sensitive to the flat SL_ 2(C) connection defining its hyperbolic structure<br> | * SU(2) connections on S^3-K should be sensitive to the flat SL_ 2(C) connection defining its hyperbolic structure<br> | ||
+ | |||
==history== | ==history== | ||
8번째 줄: | 9번째 줄: | ||
* 1997 ? | * 1997 ? | ||
* 2001(?) Murakami | * 2001(?) Murakami | ||
+ | |||
==related items== | ==related items== | ||
14번째 줄: | 16번째 줄: | ||
* [[quantum modular forms]] | * [[quantum modular forms]] | ||
* [[Volume of hyperbolic threefolds and L-values]] | * [[Volume of hyperbolic threefolds and L-values]] | ||
+ | |||
==encyclopedia== | ==encyclopedia== | ||
19번째 줄: | 22번째 줄: | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/Volume_conjecture | * http://en.wikipedia.org/wiki/Volume_conjecture | ||
− | |||
− | |||
− | |||
− | |||
− | |||
34번째 줄: | 32번째 줄: | ||
* H. Murakami, A quantum introduction to knot theory | * H. Murakami, A quantum introduction to knot theory | ||
− | |||
− | |||
− | |||
==articles== | ==articles== |
2013년 2월 10일 (일) 04:10 판
introduction
- The hyperbolic volume of a knot complement can be calculated using the Jones polynimials of the ca
- SU(2) connections on S^3-K should be sensitive to the flat SL_ 2(C) connection defining its hyperbolic structure
history
- 1995 Kashaev
- 1997 ?
- 2001(?) Murakami
encyclopedia
expositions
- http://www.math.titech.ac.jp/~Jerome/090210%20workshop.pdf
- Hyperbolic volume and the Jones polynomial (PDF), notes from a lecture at MSRI, December 2000. Earlier notes (covering more material) from a lecture series at the Grenoble summer school “Invariants des noeuds et de variétés de dimension 3”, June 1999.
- Murakami, Hitoshi. 2010. An Introduction to the Volume Conjecture. 1002.0126 (January 31). http://arxiv.org/abs/1002.0126.
- H. Murakami, 2008, An introduction to the volume conjecture and its generalizations
- H. Murakami, A quantum introduction to knot theory
articles
- Generalized volume conjecture and the A-polynomials: The Neumann–Zagier potential function as a classical limit of the partition function , 2007 http://dx.doi.org/10.1016/j.geomphys.2007.03.008
- Volume Conjecture and Asymptotic Expansion of q-Series
- Kazuhiro Hikami, Experiment. Math. Volume 12, Number 3 (2003), 319-338
- Proof of the volume conjecture for torus knots
- R. M. Kashaev and O. Tirkkonen, 2003
- Kashaev's Conjecture and the Chern-Simons Invariants of Knots and Links
- Hitoshi Murakami, Jun Murakami, Miyuki Okamoto, Toshie Takata, and Yoshiyuki Yokota, 2002
- Hyperbolic Structure Arising from a Knot Invariant, 2001
- The colored Jones polynomials and the simplicial volume of a knot
- J.Murakami, H.Murakami,, Acta Math. 186 (2001), 85–104
- On the volume conjecture for hyperbolic knots
- Yoshiyuki Yokota, 2000
- The hyperbolic volume of knots from quantum dilogarithm
- R. M. Kashaev, 1996