"Kashaev's volume conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
*  The hyperbolic volume of a knot complement can be calculated using the Jones polynimials of the ca<br>
+
*  The hyperbolic volume of a knot complement can be calculated using the Jones polynimials of the ca
*  SU(2) connections on S^3-K should be sensitive to the flat SL_ 2(C) connection defining its hyperbolic structure<br>
+
$SU(2)$ connections on $S^3-K$ should be sensitive to the flat $SL_2(C)$ connection defining its hyperbolic structure
  
  
30번째 줄: 30번째 줄:
 
==expositions==
 
==expositions==
 
* http://www.math.titech.ac.jp/~Jerome/090210%20workshop.pdf
 
* http://www.math.titech.ac.jp/~Jerome/090210%20workshop.pdf
* [http://www.math.columbia.edu/%7Edpt/speaking/hypvol.ps Hyperbolic volume and the Jones polynomial] ([http://www.math.columbia.edu/%7Edpt/speaking/hypvol.pdf PDF]), notes from a lecture at MSRI, December 2000. [http://www.math.columbia.edu/%7Edpt/speaking/Grenoble.pdf Earlier notes] (covering more material) from a lecture series at the Grenoble summer school “Invariants des noeuds et de variétés de dimension 3”, June 1999.<br>
+
* [http://www.math.columbia.edu/%7Edpt/speaking/hypvol.ps Hyperbolic volume and the Jones polynomial] ([http://www.math.columbia.edu/%7Edpt/speaking/hypvol.pdf PDF]), notes from a lecture at MSRI, December 2000. [http://www.math.columbia.edu/%7Edpt/speaking/Grenoble.pdf Earlier notes] (covering more material) from a lecture series at the Grenoble summer school “Invariants des noeuds et de variétés de dimension 3”, June 1999.
*  Murakami, Hitoshi. 2010. An Introduction to the Volume Conjecture. 1002.0126 (January 31). http://arxiv.org/abs/1002.0126. <br>
+
*  Murakami, Hitoshi. 2010. An Introduction to the Volume Conjecture. 1002.0126 (January 31). http://arxiv.org/abs/1002.0126.  
  
 
* H. Murakami, 2008, An introduction to the volume conjecture and its generalizations
 
* H. Murakami, 2008, An introduction to the volume conjecture and its generalizations
40번째 줄: 40번째 줄:
  
 
* Generalized volume conjecture and the A-polynomials: The Neumann–Zagier potential function as a classical limit of the partition function , 2007 http://dx.doi.org/10.1016/j.geomphys.2007.03.008
 
* Generalized volume conjecture and the A-polynomials: The Neumann–Zagier potential function as a classical limit of the partition function , 2007 http://dx.doi.org/10.1016/j.geomphys.2007.03.008
* [http://projecteuclid.org/euclid.em/1087329235 Volume Conjecture and Asymptotic Expansion of q-Series]<br>
+
* [http://projecteuclid.org/euclid.em/1087329235 Volume Conjecture and Asymptotic Expansion of q-Series]
 
** Kazuhiro Hikami, Experiment. Math. Volume 12, Number 3 (2003), 319-338
 
** Kazuhiro Hikami, Experiment. Math. Volume 12, Number 3 (2003), 319-338
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]<br>
+
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]
 
** R. M. Kashaev and O. Tirkkonen, 2003
 
** R. M. Kashaev and O. Tirkkonen, 2003
  
* [http://projecteuclid.org/euclid.em/1057777432 Kashaev's Conjecture and the Chern-Simons Invariants of Knots and Links]<br>
+
* [http://projecteuclid.org/euclid.em/1057777432 Kashaev's Conjecture and the Chern-Simons Invariants of Knots and Links]
 
** Hitoshi Murakami, Jun Murakami, Miyuki Okamoto, Toshie Takata, and Yoshiyuki Yokota, 2002
 
** Hitoshi Murakami, Jun Murakami, Miyuki Okamoto, Toshie Takata, and Yoshiyuki Yokota, 2002
 
* [http://arxiv.org/abs/math-ph/0105039 Hyperbolic Structure Arising from a Knot Invariant], 2001
 
* [http://arxiv.org/abs/math-ph/0105039 Hyperbolic Structure Arising from a Knot Invariant], 2001
* [http://dx.doi.org/10.1007/BF02392716 The colored Jones polynomials and the simplicial volume of a knot]<br>
+
* [http://dx.doi.org/10.1007/BF02392716 The colored Jones polynomials and the simplicial volume of a knot]
 
** J.Murakami, H.Murakami,, Acta Math. 186 (2001), 85–104
 
** J.Murakami, H.Murakami,, Acta Math. 186 (2001), 85–104
  
* [http://arxiv.org/abs/math/0009165 On the volume conjecture for hyperbolic knots]<br>
+
* [http://arxiv.org/abs/math/0009165 On the volume conjecture for hyperbolic knots]
 
** Yoshiyuki Yokota, 2000
 
** Yoshiyuki Yokota, 2000
  
* [http://dx.doi.org/10.1023/A:1007364912784 The hyperbolic volume of knots from quantum dilogarithm]<br>
+
* [http://dx.doi.org/10.1023/A:1007364912784 The hyperbolic volume of knots from quantum dilogarithm]
 
** R. M. Kashaev, 1996
 
** R. M. Kashaev, 1996
  
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 4월 24일 (수) 02:05 판

introduction

  • The hyperbolic volume of a knot complement can be calculated using the Jones polynimials of the ca
  • $SU(2)$ connections on $S^3-K$ should be sensitive to the flat $SL_2(C)$ connection defining its hyperbolic structure


history

  • 1995 Kashaev
  • 1997 ?
  • 2001(?) Murakami


related items


computational resource


encyclopedia


expositions

  • H. Murakami, 2008, An introduction to the volume conjecture and its generalizations
  • H. Murakami, A quantum introduction to knot theory


articles