"Kashaev's volume conjecture"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
35번째 줄: | 35번째 줄: | ||
==expositions== | ==expositions== | ||
+ | * [http://www.youtube.com/watch?v=KszBLLJKccQ Introduction to the Volume Conjecture, Part I], by Hitoshi Murakami | ||
+ | ** video | ||
* R. M. Kashaev , [http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5941 Faddeev's quantum dilogarithm and 3-manifold invariants], Nov 2012 | * R. M. Kashaev , [http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5941 Faddeev's quantum dilogarithm and 3-manifold invariants], Nov 2012 | ||
** video lecture | ** video lecture |
2013년 6월 26일 (수) 10:52 판
introduction
- The hyperbolic volume of a knot complement can be calculated using the Jones polynimials of the ca
- $SU(2)$ connections on $S^3-K$ should be sensitive to the flat $SL_2(C)$ connection defining its hyperbolic structure
examples
- $4_1$
- $5_2$
- $6_1$
history
- 1995 Kashaev constructed knot invariants $\langle K \rangle_N$
- 1997 ?
- 2001(?) Murakami-Murakami found that $\langle K \rangle_N$ can be obtained from colored Jones polynomial
- complex Chern-Simons theory
- quantum dilogarithm
- quantum modular forms
- Volume of hyperbolic threefolds and L-values
computational resource
encyclopedia
expositions
- Introduction to the Volume Conjecture, Part I, by Hitoshi Murakami
- video
- R. M. Kashaev , Faddeev's quantum dilogarithm and 3-manifold invariants, Nov 2012
- video lecture
- Zagier Between Number theory and topology.pdf
- http://www.math.titech.ac.jp/~Jerome/090210%20workshop.pdf
- Hyperbolic volume and the Jones polynomial (PDF), notes from a lecture at MSRI, December 2000. Earlier notes (covering more material) from a lecture series at the Grenoble summer school “Invariants des noeuds et de variétés de dimension 3”, June 1999.
- Murakami, Hitoshi. 2010. An Introduction to the Volume Conjecture. 1002.0126 (January 31). http://arxiv.org/abs/1002.0126.
- H. Murakami, 2008, An introduction to the volume conjecture and its generalizations
- H. Murakami, A quantum introduction to knot theory
articles
- Dimofte, Tudor Dan. 2010. “Refined BPS Invariants, Chern-Simons Theory, and the Quantum Dilogarithm”. Phd, California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:05142010-131147918.
- Generalized volume conjecture and the A-polynomials: The Neumann–Zagier potential function as a classical limit of the partition function , 2007 http://dx.doi.org/10.1016/j.geomphys.2007.03.008
- Volume Conjecture and Asymptotic Expansion of q-Series
- Kazuhiro Hikami, Experiment. Math. Volume 12, Number 3 (2003), 319-338
- Proof of the volume conjecture for torus knots
- R. M. Kashaev and O. Tirkkonen, 2003
- Kashaev's Conjecture and the Chern-Simons Invariants of Knots and Links
- Hitoshi Murakami, Jun Murakami, Miyuki Okamoto, Toshie Takata, and Yoshiyuki Yokota, 2002
- Hyperbolic Structure Arising from a Knot Invariant, 2001
- J.Murakami, H.Murakami, The colored Jones polynomials and the simplicial volume of a knot Acta Math. 186 (2001), 85–104
- Yoshiyuki Yokota On the volume conjecture for hyperbolic knots, 2000
- R. M. Kashaev The hyperbolic volume of knots from quantum dilogarithm, 1996