"Umbral moonshine"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				imported>Pythagoras0   | 
				||
| 10번째 줄: | 10번째 줄: | ||
===$k=1$===  | ===$k=1$===  | ||
* [[Mathieu moonshine]] corresponds to $k=1$ case  | * [[Mathieu moonshine]] corresponds to $k=1$ case  | ||
| − | * decomposition of $\varphi_{0,1}(\tau,z)$  | + | * decomposition of $Z_{K3}=2\varphi_{0,1}(\tau,z)$  | 
| 16번째 줄: | 16번째 줄: | ||
===$k=2$===  | ===$k=2$===  | ||
* $k=2$ moonshine with $2.M_{12}$  | * $k=2$ moonshine with $2.M_{12}$  | ||
| − | * decomposition of $\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24$  | + | * decomposition of weight 0 and index 2 Jacobi forms  | 
| + | $$  | ||
| + | Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+E_{4}\varphi_{-2,1}(\tau,z)^2\right),  | ||
| + | $$  | ||
| + | $$Z_{X_2^{(2)}}=\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24$$  | ||
| 38번째 줄: | 42번째 줄: | ||
==mock modular form==  | ==mock modular form==  | ||
| + | * [[Mock modular forms]]  | ||
==umbral forms==  | ==umbral forms==  | ||
* $H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}$ is a vector valued mock modular form  | * $H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}$ is a vector valued mock modular form  | ||
| + | * $H^{(2)}$ is a mock modular form with shadow $24\eta(\tau)^3$  | ||
| + | |||
==umbral groups==  | ==umbral groups==  | ||
| 48번째 줄: | 55번째 줄: | ||
\hline  | \hline  | ||
  G & M_{24} & M_{12} & &  & &\\  |   G & M_{24} & M_{12} & &  & &\\  | ||
| − |   \overline{G} & M_{24} & 2.M_{12} & &  \\  | + |   \overline{G} & M_{24} & 2.M_{12} & 2.AGL_{3}(2) & GL_2(5)/2 & SL_2(3) & Z/4  \\  | 
\end{array}  | \end{array}  | ||
| + | |||
==umbral moonshine conjecture==  | ==umbral moonshine conjecture==  | ||
2013년 8월 5일 (월) 04:28 판
introduction
- $k\in \{1,2,3,4,6,8\}$ or $\ell=k+1\in \{2,3,4,5,7,9\}$
 
$$ \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} $$
- properties
- primes dividing $|M_{24}|$
 - $(p+1)|24$
 - $\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}$
 
 
$k=1$
- Mathieu moonshine corresponds to $k=1$ case
 - decomposition of $Z_{K3}=2\varphi_{0,1}(\tau,z)$
 
$k=2$
- $k=2$ moonshine with $2.M_{12}$
 - decomposition of weight 0 and index 2 Jacobi forms
 
$$ Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+E_{4}\varphi_{-2,1}(\tau,z)^2\right), $$ $$Z_{X_2^{(2)}}=\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24$$
Jacobi form
$$ \varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\ \varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6} $$
$\mathcal{N}=4$ super conformal algebra
- $c=6k$, $k\in \mathbb{Z}_{\geq 1}$
 - two types of representations : BPS and non-BPS
 
extremal Jacobi forms
mock modular form
umbral forms
- $H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}$ is a vector valued mock modular form
 - $H^{(2)}$ is a mock modular form with shadow $24\eta(\tau)^3$
 
umbral groups
\begin{array}{l|l|l|I|I} \ell & 2 & 3 & 4 & 5 & 7 & 9 \\ \hline G & M_{24} & M_{12} & & & &\\ \overline{G} & M_{24} & 2.M_{12} & 2.AGL_{3}(2) & GL_2(5)/2 & SL_2(3) & Z/4 \\ \end{array}
umbral moonshine conjecture
- Quantum black holes, wall crossing and mock modular forms
 - Mathieu moonshine
 - monstrous moonshine
 - Characters of superconformal algebra and mock theta functions
 
computational resource