"Critical phenomena"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
 
 
 
 
 
 
  
 
  In this sense, '''the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).'''  Note that the logarithm y=log x obeys y(ax)=y(x) + log a.  It is scale invariant with exponent 0 (and a scale-dependent shift.)  This is related to the famous formula<br>     limp-->0 (x^p-1)/p = log x<br> which shows that logs are a special case of power law functions with power 0.
 
  In this sense, '''the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).'''  Note that the logarithm y=log x obeys y(ax)=y(x) + log a.  It is scale invariant with exponent 0 (and a scale-dependent shift.)  This is related to the famous formula<br>     limp-->0 (x^p-1)/p = log x<br> which shows that logs are a special case of power law functions with power 0.
39번째 줄: 35번째 줄:
 
E.A. Guggenheim, The Journal of Chemical Physics 13, 253-261 (1945).
 
E.A. Guggenheim, The Journal of Chemical Physics 13, 253-261 (1945).
  
R. M. Tromp, W. Theis, and N. C. Bartelt, “Real-Time Microscopy of Two-Dimensional Critical Fluctuations: Disordering of the Si(113)-( 3 x 1) Reconstruction,” Physical Review Letters 77, no. 12 (1996): 2522. 
+
Tromp, R. M., W. Theis, and N. C. Bartelt. 1996. Real-Time Microscopy of Two-Dimensional Critical Fluctuations: Disordering of the Si(113)-( 3 x 1) Reconstruction. Physical Review Letters 77, no. 12: 2522. doi:[http://dx.doi.org/10.1103/PhysRevLett.77.2522 10.1103/PhysRevLett.77.2522]. 
 +
 
 +
 
  
 
 
 
 

2011년 1월 26일 (수) 16:31 판

introduction

  In this sense, the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).  Note that the logarithm y=log x obeys y(ax)=y(x) + log a.  It is scale invariant with exponent 0 (and a scale-dependent shift.)  This is related to the famous formula
    limp-->0 (x^p-1)/p = log x
which shows that logs are a special case of power law functions with power 0.

 

examples

liquid-vapour critical point

paramagnetic-ferromagnetic transition

multicomponent fluids

alloys

superfulids

superconductors

polymers

fully developed turbulence

quark-gluon plasma

early universe

 

 

E.A. Guggenheim, The Journal of Chemical Physics 13, 253-261 (1945).

Tromp, R. M., W. Theis, and N. C. Bartelt. 1996. Real-Time Microscopy of Two-Dimensional Critical Fluctuations: Disordering of the Si(113)-( 3 x 1) Reconstruction. Physical Review Letters 77, no. 12: 2522. doi:10.1103/PhysRevLett.77.2522

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links