"Talk on 'introduction to conformal field theory(CFT)'"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 이름을 talk on 'introduction to conformal field theory(CFT)'로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5>introduction</h5> | ||
+ | * scaling and power law | ||
+ | * scale invariance and conformal invariance | ||
+ | * | ||
+ | |||
+ | Scale Invariance of power law functions<br> The function y=xp is "scale-invariant" in the following sense. Consider an interval such as (x,2x), where y changes from xp to 2pxp. Now scale x by a scale factor a. We look at the interval (ax,2ax) where y changes from (ax)p to 2p(ax)p. We see that y in this interval is the same (except for a scale change of ap) as y in the unscaled interval.<br> Most functions do not behave this way. Consider y=exp(x), which goes [from exp(x) to exp(2x)] over the interval (x,2x), and [from exp(ax) to exp(2ax)] in the scaled interval (ax,2ax). There is no scale factor that can be removed from y to make the second interval of y appear the same as the first.<br> The sum of two different powers is usually not scale invariant. However, special cases may still be. y=Ax2 + Bx can be written as A(x+B/2A)2 -B2/4A. If the new variable X=x+B/2A is scaled to aX, then y(aX)=a2Y(X)+(a2-1)(B2/4A). In other words, the function y(x) is scale invariant (with scaling exponent 2) after finding the right scaling variable X and allowing for a scale-dependent shift of y. In this sense, '''the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).''' Note that the logarithm y=log x obeys y(ax)=y(x) + log a. It is scale invariant with exponent 0 (and a scale-dependent shift.) This is related to the famous formula<br> limp-->0 (xp-1)/p = log x<br> which shows that logs are a special case of power law functions with power 0. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>history</h5> | ||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>related items</h5> | ||
+ | |||
+ | * [[5 conformal field theory(CFT)|5 conformal field theory]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.scholarpedia.org/ | ||
+ | * http://www.proofwiki.org/wiki/ | ||
+ | * Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]]) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>books</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * [[2010년 books and articles]]<br> | ||
+ | * http://gigapedia.info/1/ | ||
+ | * http://gigapedia.info/1/ | ||
+ | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>expositions</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://www.zentralblatt-math.org/zmath/en/ | ||
+ | * http://arxiv.org/ | ||
+ | * http://www.pdf-search.org/ | ||
+ | * http://pythagoras0.springnote.com/ | ||
+ | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>question and answers(Math Overflow)</h5> | ||
+ | |||
+ | * http://mathoverflow.net/search?q= | ||
+ | * http://mathoverflow.net/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>blogs</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q=<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * http://ncatlab.org/nlab/show/HomePage | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>experts on the field</h5> | ||
+ | |||
+ | * http://arxiv.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>links</h5> | ||
+ | |||
+ | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
+ | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * http://functions.wolfram.com/ |
2010년 10월 14일 (목) 21:19 판
introduction
- scaling and power law
- scale invariance and conformal invariance
Scale Invariance of power law functions
The function y=xp is "scale-invariant" in the following sense. Consider an interval such as (x,2x), where y changes from xp to 2pxp. Now scale x by a scale factor a. We look at the interval (ax,2ax) where y changes from (ax)p to 2p(ax)p. We see that y in this interval is the same (except for a scale change of ap) as y in the unscaled interval.
Most functions do not behave this way. Consider y=exp(x), which goes [from exp(x) to exp(2x)] over the interval (x,2x), and [from exp(ax) to exp(2ax)] in the scaled interval (ax,2ax). There is no scale factor that can be removed from y to make the second interval of y appear the same as the first.
The sum of two different powers is usually not scale invariant. However, special cases may still be. y=Ax2 + Bx can be written as A(x+B/2A)2 -B2/4A. If the new variable X=x+B/2A is scaled to aX, then y(aX)=a2Y(X)+(a2-1)(B2/4A). In other words, the function y(x) is scale invariant (with scaling exponent 2) after finding the right scaling variable X and allowing for a scale-dependent shift of y. In this sense, the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc). Note that the logarithm y=log x obeys y(ax)=y(x) + log a. It is scale invariant with exponent 0 (and a scale-dependent shift.) This is related to the famous formula
limp-->0 (xp-1)/p = log x
which shows that logs are a special case of power law functions with power 0.
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field