"Talk on 'introduction to conformal field theory(CFT)'"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
* scaling and power law
 
* scaling and power law
12번째 줄: 12번째 줄:
 
 
 
 
  
==scale invariacne and power law</h5>
+
==scale invariacne and power law==
  
 
Scale Invariance of power law functions<br> The function y=xp is "scale-invariant" in the following sense.  Consider an interval such as (x,2x), where y changes from xp to  2pxp.  Now scale x by a scale factor a.  We look at the interval (ax,2ax) where y changes from (ax)p to 2p(ax)p.  We see that y in this interval is the same (except for a scale change of ap) as y in the unscaled interval.<br> Most functions do not behave this way.  Consider y=exp(x), which goes [from exp(x) to exp(2x)] over the interval (x,2x), and [from exp(ax) to exp(2ax)] in the scaled interval (ax,2ax).  There is no scale factor that can be removed from y to make the second interval of y appear the same as the first.<br> The sum of two different powers is usually not scale invariant.  However, special cases may still be.  y=Ax2 + Bx can be written as A(x+B/2A)2 -B2/4A.  If the new variable X=x+B/2A is scaled to aX, then y(aX)=a2Y(X)+(a2-1)(B2/4A).  In other words, the function y(x) is scale invariant (with scaling exponent 2) after finding the right scaling variable X and allowing for a scale-dependent shift of y.
 
Scale Invariance of power law functions<br> The function y=xp is "scale-invariant" in the following sense.  Consider an interval such as (x,2x), where y changes from xp to  2pxp.  Now scale x by a scale factor a.  We look at the interval (ax,2ax) where y changes from (ax)p to 2p(ax)p.  We see that y in this interval is the same (except for a scale change of ap) as y in the unscaled interval.<br> Most functions do not behave this way.  Consider y=exp(x), which goes [from exp(x) to exp(2x)] over the interval (x,2x), and [from exp(ax) to exp(2ax)] in the scaled interval (ax,2ax).  There is no scale factor that can be removed from y to make the second interval of y appear the same as the first.<br> The sum of two different powers is usually not scale invariant.  However, special cases may still be.  y=Ax2 + Bx can be written as A(x+B/2A)2 -B2/4A.  If the new variable X=x+B/2A is scaled to aX, then y(aX)=a2Y(X)+(a2-1)(B2/4A).  In other words, the function y(x) is scale invariant (with scaling exponent 2) after finding the right scaling variable X and allowing for a scale-dependent shift of y.
20번째 줄: 20번째 줄:
 
 
 
 
  
==critical phenomena</h5>
+
==critical phenomena==
  
 
* [[critical phenomena]]
 
* [[critical phenomena]]
28번째 줄: 28번째 줄:
 
 
 
 
  
==correlation at large distance</h5>
+
==correlation at large distance==
  
 
* [[universality class and critical exponent]]
 
* [[universality class and critical exponent]]
39번째 줄: 39번째 줄:
 
 
 
 
  
==conformal transformations</h5>
+
==conformal transformations==
  
 
*  roughly, local dilations<br>
 
*  roughly, local dilations<br>
49번째 줄: 49번째 줄:
 
 
 
 
  
==history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
57번째 줄: 57번째 줄:
 
 
 
 
  
==related items</h5>
+
==related items==
  
 
* [[5 conformal field theory(CFT)|5 conformal field theory]]
 
* [[5 conformal field theory(CFT)|5 conformal field theory]]
65번째 줄: 65번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
  
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
76번째 줄: 76번째 줄:
 
 
 
 
  
==books</h5>
+
==books==
  
 
 
 
 
89번째 줄: 89번째 줄:
 
 
 
 
  
==expositions</h5>
+
==expositions==
  
 
* [http://felix.physics.sunysb.edu/%7Eallen/540-05/scaling.html Scale Invariance of power law functions]
 
* [http://felix.physics.sunysb.edu/%7Eallen/540-05/scaling.html Scale Invariance of power law functions]
97번째 줄: 97번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
  
 
 
 
 
113번째 줄: 113번째 줄:
 
 
 
 
  
==question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
122번째 줄: 122번째 줄:
 
 
 
 
  
==blogs</h5>
+
==blogs==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
133번째 줄: 133번째 줄:
 
 
 
 
  
==experts on the field</h5>
+
==experts on the field==
  
 
* http://arxiv.org/
 
* http://arxiv.org/
141번째 줄: 141번째 줄:
 
 
 
 
  
==links</h5>
+
==links==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 15:53 판

introduction

 

 

scale invariacne and power law

Scale Invariance of power law functions
The function y=xp is "scale-invariant" in the following sense.  Consider an interval such as (x,2x), where y changes from xp to  2pxp.  Now scale x by a scale factor a.  We look at the interval (ax,2ax) where y changes from (ax)p to 2p(ax)p.  We see that y in this interval is the same (except for a scale change of ap) as y in the unscaled interval.
Most functions do not behave this way.  Consider y=exp(x), which goes [from exp(x) to exp(2x)] over the interval (x,2x), and [from exp(ax) to exp(2ax)] in the scaled interval (ax,2ax).  There is no scale factor that can be removed from y to make the second interval of y appear the same as the first.
The sum of two different powers is usually not scale invariant.  However, special cases may still be.  y=Ax2 + Bx can be written as A(x+B/2A)2 -B2/4A.  If the new variable X=x+B/2A is scaled to aX, then y(aX)=a2Y(X)+(a2-1)(B2/4A).  In other words, the function y(x) is scale invariant (with scaling exponent 2) after finding the right scaling variable X and allowing for a scale-dependent shift of y.

 

 

critical phenomena

 

 

correlation at large distance

  • universality class and critical exponent
  • appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature.
  • the critical exponent describes the behavior of physical quantities around the critical temperature
    e.g. magnetization \(M\sim (T_C-T)^{1/8}\)
  • magnetization and susceptibility can be written as correlation functions
  • large distance behavior of spin at criticality \(\eta=1/4\)
    \(<\sigma_{i}\sigma_{i+n}>=\frac{1}{|n|^{\eta}}\)
  • correlation length critivel exponent \(\nu=1\)
    \(<\epsilon_{i}\epsilon_{i+n}>=\frac{1}{|n|^{4-\frac{2}{\nu}}}\)

 

conformal transformations

  • roughly, local dilations
    • this is also equivalent to local scale invariance
  • correlation functions do not change under conformal transformations

 

 

history

 

 

related items

 

 

encyclopedia==    

books

 

 

 

expositions

 

 

articles==      

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links