"Bootstrap percolation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “4909919” 문자열을 “” 문자열로)
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
one of important question in 2d percolation is the calculation of power-law exponent for boostrap percolation<br>
+
an important question in 2d percolation is the calculation of power-law exponent for boostrap percolation<br>
 
*  this is related to the theory of partitions without k-gaps<br>  <br>
 
*  this is related to the theory of partitions without k-gaps<br>  <br>
  
67번째 줄: 67번째 줄:
  
 
 
 
 
 
 
 
 
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
  
 
 
 
 
82번째 줄: 76번째 줄:
 
* [[asymptotic analysis of basic hypergeometric series]]<br>
 
* [[asymptotic analysis of basic hypergeometric series]]<br>
 
* [[examples of mock theta functions|Ramanujan's mock theta functions]]<br>
 
* [[examples of mock theta functions|Ramanujan's mock theta functions]]<br>
 
 
 
 
 
 
 
==encyclopedia==
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
  
 
 
 
 
127번째 줄: 96번째 줄:
 
* [http://www.springerlink.com/content/g420hc5h6qu6e65x/ sharp metastability threshold for two-dimensional bootstrap percolation]<br>
 
* [http://www.springerlink.com/content/g420hc5h6qu6e65x/ sharp metastability threshold for two-dimensional bootstrap percolation]<br>
 
**  Alexander E. Holroyd, 2003<br>
 
**  Alexander E. Holroyd, 2003<br>
 +
** [http://www.math.ubc.ca/%7Eholroyd/ http://www.math.ubc.ca/~holroyd/]
  
* [[2010년 books and articles|논문정리]]
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html][http://www.ams.org/mathscinet ]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* [http://www.math.ubc.ca/%7Eholroyd/ http://www.math.ubc.ca/~holroyd/]
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==TeX ==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2020년 11월 13일 (금) 03:54 판

introduction

  • an important question in 2d percolation is the calculation of power-law exponent for boostrap percolation
  • this is related to the theory of partitions without k-gaps
     

 

bootstrap percolation

 

 

partitions without k-gaps

  • partitions without k-gaps (or k-sequences)
  • p_k(n) is the number of partitions of n that do not contain any sequence of consecutive integers of length k. p_2 (7) = 8.
  • examples: partition of 7
    {{7},{6,1},{5,2},{5,1,1},{4,3},{4,2,1},{4,1,1,1},{3,3,1},{3,2,2},{3,2,1,1},{3,1,1,1,1},{2,2,2,1},{2,2,1,1,1},{2,1,1,1,1,1},{1,1,1,1,1,1,1}}
    7, 6 + 1, 5 + 2, 5 + 1 + 1, 4 + 1 + 1 + 1, 3 + 3 + 1, 3 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1 + 1.
    so there are 8 partitions without 2-gaps
  • Anderew's result
    • generating function for partitions without k-gaps
      \(G_2(q)=1+\sum_{n=1}^{\infty}\frac{q^n\prod_{j=1}^{n-1}(1-q^j+q^{2j})}{(q;q)_n}\)A116931
  1. (*define a gap as 'b' *)
    b := 2
    G[b_, x_] :=
     Sum[x^k*Product[1 + x^(b*j)/(1 - x^j), {j, 1, k - 1}]/(1 - x^k), {k,
       1, 30}]
    Series[G[b, x], {x, 0, 20}]
    Table[SeriesCoefficient[%, n], {n, 0, 20}]

 

 

q-series from percolation

  • definition
    \(P_k(q)=(q;q)_{\infty}G_k(q)\)
  • Andrews and Zagier expression of \(P_k(q)\)
  • result of [HLR04]
    if \(q=e^{-t}\) and  \(t\sim 0\)
    \(P_k(q) \sim \frac{-\lambda_k}{1-q}\) as \(q \to 1\)

 

 

Andrews' conjecture on asymptotics

  • asymptotics of P_2(q) is known 
    \(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,
    \(P_2(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{18t})\)
  • conjecture
    \(P_k(q) \sim \sqrt\frac{2\pi}{t}\exp(-\frac{\lambda_k}{t})\)
    where \(\lambda_k=\frac{\pi^2}{3k(k+1)}\)

 

 

tricky integrals

  • Henrik Eriksson: A Tricky Integral
    \(f_1(x)=1-x\)
    \(f_2(x)=\frac{1-x+\sqrt{(1-x)(1+3x)}}{2}\)
  • \(\lambda_k=\frac{\pi^2}{3k(k+1)}\)
  • \(\lambda_2=\frac{\pi^2}{18}\)

 

 

relevance to dedekind eta function

  • Dedekind eta function (데데킨트 에타함수)
    \(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,
    \(\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n\geq 1}^{\infty}\frac{(-1)^nq^{n(n+1)/2}}{(q)_n}\sim \sqrt\frac{2\pi}{t}\exp(-\frac{\pi^2}{6t})\)
    more generally, \(q=\exp(\frac{2\pi ih}{k})e^{-t}\)  and  \(t\to 0\) implies
    \(\sqrt{\frac{t}{2\pi}}\exp({\frac{\pi^2}{6k^2t}})\eta(\frac{h}{k}+i\frac{t}{2\pi})\sim \frac{\exp\left(\pi i (\frac{h}{12k}-s(h,k)\right)}{\sqrt{k}}\)

 

 

 

related items

 

 

articles