"Induced sign representations and characters of Hecke algebras"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
23번째 줄: | 23번째 줄: | ||
Given a partition \lambda=(\lambda_1,\cdots, \lambda_n) of n | Given a partition \lambda=(\lambda_1,\cdots, \lambda_n) of n | ||
− | define W_{\lambda}=S_{\lambda_1}\times S_{\lambda_2} \cdots \times S_{\lambda_k} | + | 1 define W_{\lambda}=S_{\lambda_1}\times S_{\lambda_2} \cdots \times S_{\lambda_k} |
− | For each coset of the form wW_{\lambda}, | + | 2 For each coset of the form wW_{\lambda}, |
− | define T_{wW_{\lambda}}=\sum_{v\ | + | define T_{wW_{\lambda}}=\sum_{v\in wW_{\lambda}}(-q)^{\ell(v)}T_{v} |
+ | |||
+ | If we set q=1, we get a sum looks like (\sum_{w\in W} w_{\lambda} sgn(v)v) | ||
+ | |||
+ | 3 Let H_n(q) act by lefy multiplication on coset sums T_{D} where D is of the form wW_{\lambda} | ||
+ | |||
+ | 4 this left multiplication can be expressed as matrix multiplication | ||
+ | |||
+ | Let \rho_{q}^{\lambda}(T_v)=matrix that correspondes to left multiplication by T_v. | ||
+ | |||
+ | Let \rho^{\lambda}(v)=matrix corresponding to left multiplication by v. | ||
+ | |||
+ | |||
+ | |||
+ | the trace/ch | ||
+ | |||
+ | |||
2012년 5월 1일 (화) 07:51 판
introduction
- Many combinatorial formulas for computations in the symmetric group Sn can be modified appropriately to describe computations in the Hecke algebra Hn(q), a deformation of C[Sn].
induced sign characters
- Unfortunately, the known formulas for induced sign characters of Sn are not among these.
- For induced sign characters of Hn(q), we conjecture formulas which specialize at q=1 to formulas for induced sign characters of Sn.
- We will discuss evidence in favor of the conjecture, and relations to the chromatic quasi-symmetric functions of Shareshian and Wachs.
Given a partition \lambda=(\lambda_1,\cdots, \lambda_n) of n
1 define W_{\lambda}=S_{\lambda_1}\times S_{\lambda_2} \cdots \times S_{\lambda_k}
2 For each coset of the form wW_{\lambda},
define T_{wW_{\lambda}}=\sum_{v\in wW_{\lambda}}(-q)^{\ell(v)}T_{v}
If we set q=1, we get a sum looks like (\sum_{w\in W} w_{\lambda} sgn(v)v)
3 Let H_n(q) act by lefy multiplication on coset sums T_{D} where D is of the form wW_{\lambda}
4 this left multiplication can be expressed as matrix multiplication
Let \rho_{q}^{\lambda}(T_v)=matrix that correspondes to left multiplication by T_v.
Let \rho^{\lambda}(v)=matrix corresponding to left multiplication by v.
the trace/ch
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field