"Induced sign representations and characters of Hecke algebras"의 두 판 사이의 차이
imported>Pythagoras0 |
imported>Pythagoras0 |
||
49번째 줄: | 49번째 줄: | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==history== | ||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==related items== | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==encyclopedia== | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.scholarpedia.org/ | ||
+ | * [http://eom.springer.de/ http://eom.springer.de] | ||
+ | * http://www.proofwiki.org/wiki/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==books== | ||
+ | |||
+ | |||
+ | |||
+ | * [[2011년 books and articles]] | ||
+ | * http://library.nu/search?q= | ||
+ | * http://library.nu/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==articles== | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://www.zentralblatt-math.org/zmath/en/ | ||
+ | * http://arxiv.org/ | ||
+ | * http://www.pdf-search.org/ | ||
+ | * http://pythagoras0.springnote.com/ | ||
+ | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==question and answers(Math Overflow)== | ||
+ | |||
+ | * http://mathoverflow.net/search?q= | ||
+ | * http://math.stackexchange.com/search?q= | ||
+ | * http://physics.stackexchange.com/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==blogs== | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q=<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * http://ncatlab.org/nlab/show/HomePage | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==experts on the field== | ||
+ | |||
+ | * http://arxiv.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==links== | ||
+ | |||
+ | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
+ | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
[[분류:개인노트]] | [[분류:개인노트]] | ||
+ | [[분류:quantum groups]] | ||
+ | [[분류:math and physics]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:Hecke algebra]] | [[분류:Hecke algebra]] | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 02:57 판
introduction
- Many combinatorial formulas for computations in the symmetric group Sn can be modified appropriately to describe computations in the Hecke algebra Hn(q), a deformation of C[Sn].
induced sign characters
- Unfortunately, the known formulas for induced sign characters of Sn are not among these.
- For induced sign characters of Hn(q), we conjecture formulas which specialize at q=1 to formulas for induced sign characters of Sn.
- We will discuss evidence in favor of the conjecture, and relations to the chromatic quasi-symmetric functions of Shareshian and Wachs.
Given a partition \lambda=(\lambda_1,\cdots, \lambda_n) of n
1 define W_{\lambda}=S_{\lambda_1}\times S_{\lambda_2} \cdots \times S_{\lambda_k}
2 For each coset of the form wW_{\lambda},
define T_{wW_{\lambda}}=\sum_{v\in wW_{\lambda}}(-q)^{\ell(v)}T_{v}
If we set q=1, we get a sum looks like (\sum_{w\in W} w_{\lambda} sgn(v)v)
3 Let H_n(q) act by lefy multiplication on coset sums T_{D} where D is of the form wW_{\lambda}
4 this left multiplication can be expressed as matrix multiplication
Let \rho_{q}^{\lambda}(T_v)=matrix that correspondes to left multiplication by T_v.
Let \rho^{\lambda}(v)=matrix corresponding to left multiplication by v.
the trace/character associated to representation \rho_{q}^{\lambda} are usually denoted by \epsilon_{q}^{\lambda}
Q. What is a nice formula for \epsilon_{q}^{\lambda}(T_{v}) ? (open)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field