"Strange identity of Freudenthal-de Vries"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
* [[Root Systems and Dynkin diagrams]] | * [[Root Systems and Dynkin diagrams]] | ||
* <math>\rho</math> Weyl vector | * <math>\rho</math> Weyl vector | ||
* Kac book 219p, 221p | * Kac book 219p, 221p | ||
− | * strange formula :<math>\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}</math | + | * strange formula :<math>\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}</math> |
− | * very strange formula | + | * very strange formula |
− | * conformal anomaly :<math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}</math | + | * conformal anomaly :<math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}</math> |
− | + | ==articles== | |
− | + | * Thiel, Marko, and Nathan Williams. “Strange Expectations.” arXiv:1508.05293 [math], August 21, 2015. http://arxiv.org/abs/1508.05293. | |
− | |||
− | |||
− | |||
* H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969. | * H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969. | ||
* [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]<br> | * [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]<br> |
2015년 8월 23일 (일) 19:39 판
introduction
- Root Systems and Dynkin diagrams
- \(\rho\) Weyl vector
- Kac book 219p, 221p
- strange formula \[\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\]
- very strange formula
- conformal anomaly \[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}\]
articles
- Thiel, Marko, and Nathan Williams. “Strange Expectations.” arXiv:1508.05293 [math], August 21, 2015. http://arxiv.org/abs/1508.05293.
- H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969.
- AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries
- John Burn, 2004
- John Burn, 2004