"폴리로그 함수(polylogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(section '관련논문' updated)
71번째 줄: 71번째 줄:
 
* Ngoc Hoang, Gérard Duchamp, Hoang Ngoc Minh, The algebra of Kleene stars of the plane and polylogarithms, arXiv:1602.02801[math.CO], February 05 2016, http://arxiv.org/abs/1602.02801v2, 10.1145/1235, http://dx.doi.org/10.1145/1235
 
* Ngoc Hoang, Gérard Duchamp, Hoang Ngoc Minh, The algebra of Kleene stars of the plane and polylogarithms, arXiv:1602.02801[math.CO], February 05 2016, http://arxiv.org/abs/1602.02801v2, 10.1145/1235, http://dx.doi.org/10.1145/1235
 
* Kenji Sakugawa, Shin-ichiro Seki, Finite and étale polylogarithms, http://arxiv.org/abs/1603.05811v1
 
* Kenji Sakugawa, Shin-ichiro Seki, Finite and étale polylogarithms, http://arxiv.org/abs/1603.05811v1
* Frellesvig, Hjalte, Damiano Tommasini, and Christopher Wever. “On the Reduction of Generalized Polylogarithms to $\text{Li}_n$ and $\text{Li}_{2,2}$ and on the Evaluation Thereof.” arXiv:1601.02649 [hep-Ph], January 11, 2016. http://arxiv.org/abs/1601.02649.
+
* Frellesvig, Hjalte, Damiano Tommasini, and Christopher Wever. “On the Reduction of Generalized Polylogarithms to <math>\text{Li}_n</math> and <math>\text{Li}_{2,2}</math> and on the Evaluation Thereof.” arXiv:1601.02649 [hep-Ph], January 11, 2016. http://arxiv.org/abs/1601.02649.
 
* Henn, Johannes M., Alexander V. Smirnov, and Vladimir A. Smirnov. “Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six.” arXiv:1512.08389 [hep-Ph, Physics:hep-Th, Physics:math-Ph], December 28, 2015. http://arxiv.org/abs/1512.08389.
 
* Henn, Johannes M., Alexander V. Smirnov, and Vladimir A. Smirnov. “Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six.” arXiv:1512.08389 [hep-Ph, Physics:hep-Th, Physics:math-Ph], December 28, 2015. http://arxiv.org/abs/1512.08389.
 
* Rudenko, Daniil. “On the Functional Equations for Polylogarithms in One Variable.” arXiv:1511.09110 [math], November 2, 2015. http://arxiv.org/abs/1511.09110.
 
* Rudenko, Daniil. “On the Functional Equations for Polylogarithms in One Variable.” arXiv:1511.09110 [math], November 2, 2015. http://arxiv.org/abs/1511.09110.
 
* Sakugawa, Kenji, and Shin-ichiro Seki. “On Functional Equations of Finite Multiple Polylogarithms.” arXiv:1509.07653 [math], September 25, 2015. http://arxiv.org/abs/1509.07653.
 
* Sakugawa, Kenji, and Shin-ichiro Seki. “On Functional Equations of Finite Multiple Polylogarithms.” arXiv:1509.07653 [math], September 25, 2015. http://arxiv.org/abs/1509.07653.
* [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$] D. J. Broadhurst, 1998
+
* [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of <math>\zeta(3)</math> and <math>\zeta(5)</math>] D. J. Broadhurst, 1998
 
* [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants] David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.
 
* [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants] David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.
 
*  Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986
 
*  Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986
*  The classical polylogarithms, algebraic K-theory and $\zeta_F(n)$, Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135
+
*  The classical polylogarithms, algebraic K-theory and <math>\zeta_F(n)</math>, Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135
  
 
[[분류:다이로그]]
 
[[분류:다이로그]]

2020년 11월 13일 (금) 03:10 판

개요




정의

\[\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}\] \[\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(t) \frac{dt}{t}\]



로그함수

\[-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots\]



역사




메모

관련된 항목들



사전 형태의 자료


리뷰논문, 에세이, 강의노트

  • Vergu, C. “Polylogarithm Identities, Cluster Algebras and the N=4 Supersymmetric Theory.” arXiv:1512.08113 [hep-Th], December 26, 2015. http://arxiv.org/abs/1512.08113.
  • John R. Rhodes Polylogarithms ,2008
  • Bowman, Douglas, and David M. Bradley. “Multiple Polylogarithms: A Brief Survey.” arXiv:math/0310062, October 5, 2003. http://arxiv.org/abs/math/0310062.
  • Hain, Richard. “Classical Polylogarithms.” arXiv:alg-geom/9202022, February 20, 1992. http://arxiv.org/abs/alg-geom/9202022.
  • Askey, Richard. 1982. “Book Review: Polylogarithms and Associated Functions.” American Mathematical Society. Bulletin. New Series 6 (2): 248–251. doi:10.1090/S0273-0979-1982-14998-9.
  • Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm )

관련논문