"Bailey pair and lemma"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
28번째 줄: | 28번째 줄: | ||
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">Bailey chain</h5> | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">Bailey chain</h5> | ||
− | * we derive a new Bailey chain from a known Bailey pair<br><math>\alpha^\prime_n= \frac{(\rho_1;q)_n(\rho_2;q)_n(aq/\rho_1\rho_2)^n | + | * we derive a new Bailey chain from a known Bailey pair<br><math>\alpha^\prime_n= \frac{(\rho_1;q)_n(\rho_2;q)_n(aq/\rho_1\rho_2)^n}{(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\alpha_n</math><br><math>\beta^\prime_n = \sum_{j\ge0}\frac{(\rho_1;q)_j(\rho_2;q)_j(aq/\rho_1\rho_2;q)_{n-j}(aq/\rho_1\rho_2)^j}{(q;q)_{n-j}(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\beta_j</math><br> |
− | * corollary<br> | + | * corollary. by taking <math>\rho_1,\rho_2\to \infty</math> , we get <br> <br><math>\alpha^\prime_n= a^nq^{n^2}\alpha_n</math><br><math>\beta^\prime_n = \sum_{r=0}^{L}\frac{a^rq^{r^2}}{(q)_{L-r}}\beta_j</math><br> |
− | + | ||
+ | |||
+ | |||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">history</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">history</h5> | ||
44번째 줄: | 46번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5> | ||
+ | |||
+ | * [[Bloch group]]<br> | ||
+ | * [[Bloch group, K-theory and dilogarithm]]<br> | ||
+ | * [[1 manufacturing matrices from lower ranks|manufacturing matrices from lower ranks]]<br> | ||
2010년 6월 11일 (금) 05:25 판
introduction
Bailey lemma
Bailey pair
- the sequence \(\{\alpha_r\}, \{\beta_r\}\) satisfying the following is called a Bailey pair
\(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\) - conjugate Bailey pair \(\{\delta_r\}, \{\gamma_r\}\)
\(\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}\)
Bailey chain
- we derive a new Bailey chain from a known Bailey pair
\(\alpha^\prime_n= \frac{(\rho_1;q)_n(\rho_2;q)_n(aq/\rho_1\rho_2)^n}{(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\alpha_n\)
\(\beta^\prime_n = \sum_{j\ge0}\frac{(\rho_1;q)_j(\rho_2;q)_j(aq/\rho_1\rho_2;q)_{n-j}(aq/\rho_1\rho_2)^j}{(q;q)_{n-j}(aq/\rho_1;q)_n(aq/\rho_2;q)_n}\beta_j\) - corollary. by taking \(\rho_1,\rho_2\to \infty\) , we get
\(\alpha^\prime_n= a^nq^{n^2}\alpha_n\)
\(\beta^\prime_n = \sum_{r=0}^{L}\frac{a^rq^{r^2}}{(q)_{L-r}}\beta_j\)
history
encyclopedia
-
- http://en.wikipedia.org/wiki/Bailey_pair
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
-
- 50 Years of Bailey's lemma
- S. Ole Warnaar, 2009
- S. Ole Warnaar, 2009
- Andrews–Gordon type identities from combinations of Virasoro characters
- Boris Feigin, Omar Foda, Trevor Welsh, 2007
- Boris Feigin, Omar Foda, Trevor Welsh, 2007
-
Finite Rogers-Ramanujan Type Identities
- Andrew V. Sills, 2003
- Andrew V. Sills, 2003
- Rogers-Ramanujan-Slater Type identities
- Mc Laughlin
- Mc Laughlin
- Virasoro character identities from the Andrews–Bailey construction
- Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)
- Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)
- Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[1]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
experts on the field