"Bailey pair and lemma"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
129번째 줄: 129번째 줄:
 
* [http://dx.doi.org/10.1142/S0217751X97001110 Virasoro character identities from the Andrews–Bailey construction]<br>
 
* [http://dx.doi.org/10.1142/S0217751X97001110 Virasoro character identities from the Andrews–Bailey construction]<br>
 
**  Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)<br>
 
**  Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)<br>
 +
*  z2 -11z - 1 as an algebraic invariant for the hard-hexagon model<br>
  
 
* [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.]<br>
 
* [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.]<br>
140번째 줄: 141번째 줄:
 
* [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]<br>
 
* [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]<br>
 
**  Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475<br>
 
**  Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475<br>
**   <br>
+
* [http://plms.oxfordjournals.org/cgi/reprint/s2-50/1/1.pdf Identities of Rogers-Ramanujan type]<br>
 +
**  Bailey, 1944<br>
 
*  On two theorems of combinatory analysis and some allied identities <br>
 
*  On two theorems of combinatory analysis and some allied identities <br>
 
* http://www.ams.org/mathscinet<br>
 
* http://www.ams.org/mathscinet<br>

2010년 8월 10일 (화) 09:43 판

introduction
  •  q-Pfaff-Sallschutz sum

 

 

Bailey lemma

If the sequence \(\{\alpha_r\}, \{\beta_r\}\), \(\{\delta_r\}, \{\gamma_r\}\) satisfy the following

\(\beta_L=\sum_{r=0}^{L}{\alpha_r}{u_{L-r}v_{L+r}}\), \(\gamma_L=\sum_{r=L}^{\infty}{\delta_r}{u_{r-L}v_{r+L}}\)

then,

\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)

 

(corollay 1)

Choose the following

\(u_{n}=\frac{1}{(q)_n}\) ,\(v_{n}=\frac{1}{(x)_n}\),\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\)

Then 

 \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\),

and hence by Bailey's lemma,

\(\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{y^n z^n}\beta_{n}=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\alpha_{n}\)

(proof)

By the basic analogue of Gauss' theorem 

(Recall \(\sum_{n=0}^{\infty}\frac{(a,q)_{n}(b,q)_{n}}{(c ,q)_{n}(q ,q)_{n}}(\frac{c}{ab})^{n}=\frac{(c/a;q)_{\infty}(c/b;q)_{\infty}}{(c;q)_{\infty}(c/(ab);q)_{\infty}}\), q-analogue of summation formulas )

Also note that \((a)_{n+r}=(a)_{n}(aq^{n})_{r}\). 

Put \(a=yq^{n},b=zq^{n},c=xq^{2n}\). 

\(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) (a different notation \(\gamma_n=\prod{{x/y,x/z;q}\choose {x,x/yz;}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) is also used sometimes) ■

 

 

 

Bailey pair
  • the sequence \(\{\alpha_r\}, \{\beta_r\}\) satisfying the following is called a Bailey pair
    \(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\)
  • conjugate Bailey pair  \(\{\delta_r\}, \{\gamma_r\}\)
    \(\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}\)

 

 

 

Bailey chain

 

 

history

 

 

 

related items

 

 

encyclopedia

 

 

books

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links