"Bailey pair and lemma"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">introduction</h5> |
* q-Pfaff-Sallschutz sum<br> | * q-Pfaff-Sallschutz sum<br> | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 2em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">Bailey lemma</h5> |
If the sequence <math>\{\alpha_r\}, \{\beta_r\}</math>, <math>\{\delta_r\}, \{\gamma_r\}</math> satisfy the following | If the sequence <math>\{\alpha_r\}, \{\beta_r\}</math>, <math>\{\delta_r\}, \{\gamma_r\}</math> satisfy the following | ||
19번째 줄: | 19번째 줄: | ||
− | ( | + | (corolary 1) |
Choose the following | Choose the following | ||
51번째 줄: | 51번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">Bailey pair</h5> |
* the sequence <math>\{\alpha_r\}, \{\beta_r\}</math> satisfying the following is called a Bailey pair<br><math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math><br> | * the sequence <math>\{\alpha_r\}, \{\beta_r\}</math> satisfying the following is called a Bailey pair<br><math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math><br> | ||
62번째 줄: | 62번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">Bailey chain</h5> |
* [[6080259|Bailey chain]]<br> | * [[6080259|Bailey chain]]<br> | ||
70번째 줄: | 70번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">history</h5> |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
80번째 줄: | 80번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">related items</h5> |
* [[Bloch group]]<br> | * [[Bloch group]]<br> | ||
90번째 줄: | 90번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">encyclopedia</h5> |
* http://en.wikipedia.org/wiki/Bailey_pair | * http://en.wikipedia.org/wiki/Bailey_pair | ||
102번째 줄: | 102번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">books</h5> |
* [[2010년 books and articles]]<br> | * [[2010년 books and articles]]<br> | ||
115번째 줄: | 115번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">articles</h5> |
+ | * <br> | ||
* [http://arxiv.org/abs/0910.2062v2 50 Years of Bailey's lemma]<br> | * [http://arxiv.org/abs/0910.2062v2 50 Years of Bailey's lemma]<br> | ||
** S. Ole Warnaar, 2009<br> | ** S. Ole Warnaar, 2009<br> | ||
129번째 줄: | 130번째 줄: | ||
* [http://dx.doi.org/10.1142/S0217751X97001110 Virasoro character identities from the Andrews–Bailey construction]<br> | * [http://dx.doi.org/10.1142/S0217751X97001110 Virasoro character identities from the Andrews–Bailey construction]<br> | ||
** Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)<br> | ** Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)<br> | ||
− | |||
* [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.]<br> | * [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.]<br> | ||
148번째 줄: | 148번째 줄: | ||
* http://www.zentralblatt-math.org/zmath/en/ | * http://www.zentralblatt-math.org/zmath/en/ | ||
* http://pythagoras0.springnote.com/ | * http://pythagoras0.springnote.com/ | ||
− | * http://math.berkeley.edu/~reb/papers/index.html[http://www.ams.org/mathscinet ] | + | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html][http://www.ams.org/mathscinet ] |
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | * http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | ||
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7= | * http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7= | ||
157번째 줄: | 157번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">question and answers(Math Overflow)</h5> |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
166번째 줄: | 166번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">blogs</h5> |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
176번째 줄: | 176번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">experts on the field</h5> |
* http://arxiv.org/ | * http://arxiv.org/ | ||
184번째 줄: | 184번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">links</h5> |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] |
* http://functions.wolfram.com/ | * http://functions.wolfram.com/ | ||
* | * |
2010년 9월 17일 (금) 09:02 판
introduction
- q-Pfaff-Sallschutz sum
Bailey lemma
If the sequence \(\{\alpha_r\}, \{\beta_r\}\), \(\{\delta_r\}, \{\gamma_r\}\) satisfy the following
\(\beta_L=\sum_{r=0}^{L}{\alpha_r}{u_{L-r}v_{L+r}}\), \(\gamma_L=\sum_{r=L}^{\infty}{\delta_r}{u_{r-L}v_{r+L}}\)
then,
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
(corolary 1)
Choose the following
\(u_{n}=\frac{1}{(q)_n}\) ,\(v_{n}=\frac{1}{(x)_n}\),\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\)
Then
\(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\),
and hence by Bailey's lemma,
\(\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{y^n z^n}\beta_{n}=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\alpha_{n}\)
(proof)
By the basic analogue of Gauss' theorem
(Recall \(\sum_{n=0}^{\infty}\frac{(a,q)_{n}(b,q)_{n}}{(c ,q)_{n}(q ,q)_{n}}(\frac{c}{ab})^{n}=\frac{(c/a;q)_{\infty}(c/b;q)_{\infty}}{(c;q)_{\infty}(c/(ab);q)_{\infty}}\), q-analogue of summation formulas )
Also note that \((a)_{n+r}=(a)_{n}(aq^{n})_{r}\).
Put \(a=yq^{n},b=zq^{n},c=xq^{2n}\).
\(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) (a different notation \(\gamma_n=\prod{{x/y,x/z;q}\choose {x,x/yz;}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) is also used sometimes) ■
Bailey pair
- the sequence \(\{\alpha_r\}, \{\beta_r\}\) satisfying the following is called a Bailey pair
\(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\) - conjugate Bailey pair \(\{\delta_r\}, \{\gamma_r\}\)
\(\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}\)
Bailey chain
history
encyclopedia
- http://en.wikipedia.org/wiki/Bailey_pair
- http://en.wikipedia.org/wiki/Wilfrid_Norman_Bailey
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
-
- 50 Years of Bailey's lemma
- S. Ole Warnaar, 2009
- S. Ole Warnaar, 2009
- A generalization of the q-Saalschutz sum and the Burge transform
- A. Schilling, S.O. Warnaa, 2009
- A. Schilling, S.O. Warnaa, 2009
- Rogers-Ramanujan-Slater Type identities
- Mc Laughlin, 2008
- Mc Laughlin, 2008
- Andrews–Gordon type identities from combinations of Virasoro characters
- Boris Feigin, Omar Foda, Trevor Welsh, 2007
- Boris Feigin, Omar Foda, Trevor Welsh, 2007
- Finite Rogers-Ramanujan Type Identities
- Andrew V. Sills, 2003
- Andrew V. Sills, 2003
- Virasoro character identities from the Andrews–Bailey construction
- Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)
- Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)
- Multiple series Rogers-Ramanujan type identities.
- George E. Andrews, Pacific J. Math. Volume 114, Number 2 (1984), 267-283.
- George E. Andrews, Pacific J. Math. Volume 114, Number 2 (1984), 267-283.
- Special values of the dilogarithm function
- J. H. Loxton, 1984
- Wilfrid Norman Bailey
- Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512
- Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512
- Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- A New Proof of Rogers's Transformations of Infinite Series
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
- Identities of Rogers-Ramanujan type
- Bailey, 1944
- Bailey, 1944
- On two theorems of combinatory analysis and some allied identities
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[1]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/10.1112/plms/s2-53.6.460
question and answers(Math Overflow)
blogs
experts on the field