"Bailey pair and lemma"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">introduction</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">introduction</h5>
  
 
*   q-Pfaff-Sallschutz sum<br>
 
*   q-Pfaff-Sallschutz sum<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 2em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">Bailey lemma</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 2em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">Bailey lemma</h5>
  
 
If the sequence <math>\{\alpha_r\}, \{\beta_r\}</math>, <math>\{\delta_r\}, \{\gamma_r\}</math> satisfy the following
 
If the sequence <math>\{\alpha_r\}, \{\beta_r\}</math>, <math>\{\delta_r\}, \{\gamma_r\}</math> satisfy the following
19번째 줄: 19번째 줄:
 
 
 
 
  
(corollay 1)
+
(corolary 1)
  
 
Choose the following
 
Choose the following
51번째 줄: 51번째 줄:
 
 
 
 
  
<h5 style="MARGIN: 0px; LINE-HEIGHT: 2em;">Bailey pair</h5>
+
<h5 style="margin: 0px; line-height: 2em;">Bailey pair</h5>
  
 
*  the sequence <math>\{\alpha_r\}, \{\beta_r\}</math> satisfying the following is called a Bailey pair<br><math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math><br>
 
*  the sequence <math>\{\alpha_r\}, \{\beta_r\}</math> satisfying the following is called a Bailey pair<br><math>\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}</math><br>
62번째 줄: 62번째 줄:
 
 
 
 
  
<h5 style="MARGIN: 0px; LINE-HEIGHT: 2em;">Bailey chain</h5>
+
<h5 style="margin: 0px; line-height: 2em;">Bailey chain</h5>
  
 
* [[6080259|Bailey chain]]<br>
 
* [[6080259|Bailey chain]]<br>
70번째 줄: 70번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">history</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
80번째 줄: 80번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">related items</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">related items</h5>
  
 
* [[Bloch group]]<br>
 
* [[Bloch group]]<br>
90번째 줄: 90번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">encyclopedia</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">encyclopedia</h5>
  
 
* http://en.wikipedia.org/wiki/Bailey_pair
 
* http://en.wikipedia.org/wiki/Bailey_pair
102번째 줄: 102번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">books</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">books</h5>
  
 
* [[2010년 books and articles]]<br>
 
* [[2010년 books and articles]]<br>
115번째 줄: 115번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">articles</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">articles</h5>
  
 +
*   <br>
 
* [http://arxiv.org/abs/0910.2062v2 50 Years of Bailey's lemma]<br>
 
* [http://arxiv.org/abs/0910.2062v2 50 Years of Bailey's lemma]<br>
 
**  S. Ole Warnaar, 2009<br>
 
**  S. Ole Warnaar, 2009<br>
129번째 줄: 130번째 줄:
 
* [http://dx.doi.org/10.1142/S0217751X97001110 Virasoro character identities from the Andrews–Bailey construction]<br>
 
* [http://dx.doi.org/10.1142/S0217751X97001110 Virasoro character identities from the Andrews–Bailey construction]<br>
 
**  Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)<br>
 
**  Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)<br>
*  z2 -11z - 1 as an algebraic invariant for the hard-hexagon model<br>
 
  
 
* [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.]<br>
 
* [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.]<br>
148번째 줄: 148번째 줄:
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* http://pythagoras0.springnote.com/
* http://math.berkeley.edu/~reb/papers/index.html[http://www.ams.org/mathscinet ]
+
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html][http://www.ams.org/mathscinet ]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
157번째 줄: 157번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">question and answers(Math Overflow)</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
166번째 줄: 166번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">blogs</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">blogs</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
176번째 줄: 176번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">experts on the field</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">experts on the field</h5>
  
 
* http://arxiv.org/
 
* http://arxiv.org/
184번째 줄: 184번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">links</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/
 
*
 
*

2010년 9월 17일 (금) 10:02 판

introduction
  •  q-Pfaff-Sallschutz sum

 

 

Bailey lemma

If the sequence \(\{\alpha_r\}, \{\beta_r\}\), \(\{\delta_r\}, \{\gamma_r\}\) satisfy the following

\(\beta_L=\sum_{r=0}^{L}{\alpha_r}{u_{L-r}v_{L+r}}\), \(\gamma_L=\sum_{r=L}^{\infty}{\delta_r}{u_{r-L}v_{r+L}}\)

then,

\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)

 

(corolary 1)

Choose the following

\(u_{n}=\frac{1}{(q)_n}\) ,\(v_{n}=\frac{1}{(x)_n}\),\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\)

Then 

 \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\),

and hence by Bailey's lemma,

\(\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{y^n z^n}\beta_{n}=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\sum_{n=0}^{\infty}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\alpha_{n}\)

(proof)

By the basic analogue of Gauss' theorem 

(Recall \(\sum_{n=0}^{\infty}\frac{(a,q)_{n}(b,q)_{n}}{(c ,q)_{n}(q ,q)_{n}}(\frac{c}{ab})^{n}=\frac{(c/a;q)_{\infty}(c/b;q)_{\infty}}{(c;q)_{\infty}(c/(ab);q)_{\infty}}\), q-analogue of summation formulas )

Also note that \((a)_{n+r}=(a)_{n}(aq^{n})_{r}\). 

Put \(a=yq^{n},b=zq^{n},c=xq^{2n}\). 

\(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) (a different notation \(\gamma_n=\prod{{x/y,x/z;q}\choose {x,x/yz;}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) is also used sometimes) ■

 

 

 

Bailey pair
  • the sequence \(\{\alpha_r\}, \{\beta_r\}\) satisfying the following is called a Bailey pair
    \(\beta_L=\sum_{r=0}^{L}\frac{\alpha_r}{(q)_{L-r}(aq)_{L+r}}\)
  • conjugate Bailey pair  \(\{\delta_r\}, \{\gamma_r\}\)
    \(\gamma_L=\sum_{r=L}^{\infty}\frac{\delta_r}{(q)_{r-L}(aq)_{r+L}}\)

 

 

 

Bailey chain

 

 

history

 

 

 

related items

 

 

encyclopedia

 

 

books

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links