"Bailey lattice"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
  
 
Then <math>\{\alpha_r'\}, \{\beta_r'\}</math>  is a Bailey pair relative to <math>aq^{-1}</math>
 
Then <math>\{\alpha_r'\}, \{\beta_r'\}</math>  is a Bailey pair relative to <math>aq^{-1}</math>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">comparison with Bailey chain</h5>
 +
 +
* [[6080259|Bailey chain]]<br><math>\alpha^\prime_n= a^nq^{n^2}\alpha_n</math><br><math>\beta^\prime_L = \sum_{r=0}^{L}\frac{a^rq^{r^2}}{(q)_{L-r}}\beta_r</math><br>
 +
*  This does not change the parameter a of the Bailey pair.<br>
 +
*  lattice construction changes this<br>
 +
 +
 
  
 
 
 
 
17번째 줄: 29번째 줄:
 
Let <math>\{\alpha_r\}, \{\beta_r\}</math> be the initial Bailey pair relative to a
 
Let <math>\{\alpha_r\}, \{\beta_r\}</math> be the initial Bailey pair relative to a
  
apply Bailey chain construction k-i-1 times
+
apply Bailey chain construction k-i-1 times ([[6080259|Bailey chain]])
  
 
At the (k-i)th step apply Bailey lattice
 
At the (k-i)th step apply Bailey lattice
  
apply Bailey  i times again.
+
apply Bailey chain construction i times again.
  
 
Then we get a Bailey pair
 
Then we get a Bailey pair
31번째 줄: 43번째 줄:
 
<math>\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}</math>
 
<math>\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}</math>
  
Take L to limit.
+
and take the limit L\to\infty
 +
 
 +
 
  
 
 
 
 

2010년 10월 9일 (토) 05:42 판

introduction

Let \(\{\alpha_r\}, \{\beta_r\}\) be a Bailey pair relative to a and set

\(\alpha_0'=0\), \(\alpha_n'=(1-a)a^nq^{n^2-n}(\frac{\alpha_n}{1-aq^{2n}}-\frac{aq^{2n-2}\alpha_{n-1}}{1-aq^{2n-2}})\)\(\beta_n'=\sum_{r=0}^{n}\frac{a^rq^{r^2-r}}{(q)_{n-r}}\beta_{r}\)

Then \(\{\alpha_r'\}, \{\beta_r'\}\)  is a Bailey pair relative to \(aq^{-1}\)

 

 

comparison with Bailey chain
  • Bailey chain
    \(\alpha^\prime_n= a^nq^{n^2}\alpha_n\)
    \(\beta^\prime_L = \sum_{r=0}^{L}\frac{a^rq^{r^2}}{(q)_{L-r}}\beta_r\)
  • This does not change the parameter a of the Bailey pair.
  • lattice construction changes this

 

 

 

 

corollary

Let \(\{\alpha_r\}, \{\beta_r\}\) be the initial Bailey pair relative to a

apply Bailey chain construction k-i-1 times (Bailey chain)

At the (k-i)th step apply Bailey lattice

apply Bailey chain construction i times again.

Then we get a Bailey pair

\(\{\alpha_r'\}, \{\beta_r'\}\)  is a Bailey pair relative to \(aq^{-1}\).

If we use the defining relation of Bailey pair to \(\{\alpha_r'\}, \{\beta_r'\}\),

\(\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}\)

and take the limit L\to\infty

 

 

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles
  • A Bailey Lattice
    • Jeremy Lovejoy, Proceedings of the American Mathematical Society, Vol. 132, No. 5 (May, 2004), pp. 1507-1516

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links