"BCn interpolation polynomials"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
+ | ===notation=== | ||
+ | We also define relations | ||
+ | $\prec$ and $\succ$ such that $\kappa\prec\lambda$ (equivalently | ||
+ | $\lambda\succ\kappa$) for two partitions iff $\lambda/\kappa$ is a vertical | ||
+ | strip; that is, $\kappa_i\le \lambda_i\le \kappa_i+1$ for all $i$. | ||
+ | |||
+ | |||
+ | ==branching rule== | ||
We have | We have | ||
\[ | \[ |
2015년 8월 24일 (월) 22:46 판
introduction
notation
We also define relations $\prec$ and $\succ$ such that $\kappa\prec\lambda$ (equivalently $\lambda\succ\kappa$) for two partitions iff $\lambda/\kappa$ is a vertical strip; that is, $\kappa_i\le \lambda_i\le \kappa_i+1$ for all $i$.
branching rule
We have \[ \bar{P}^{*(n+1)}_\lambda(x_1,x_2,\dots x_n,v;q,t,s) = \sum_{\substack{\mu'\prec\lambda'\\\mu_{n+1}=0}} \psi^{(b)}_{\lambda/\mu}(v;q,t,s t^n) \bar{P}^{*(n)}_\mu(x_1,x_2,\dots x_n;q,t,s), \] where \[ \psi^{(b)}_{\lambda/\mu}(v;q,t,s) = \psi_{\lambda/\mu}(q,t) \prod_{(i,j)\in \lambda/\mu} (v+1/v-q^{j-1} t^{1-i}s-q^{1-j}t^{i-1}/s) \]
articles
- Rains, Eric M. “BCn-Symmetric Polynomials.” Transformation Groups 10, no. 1 (March 2005): 63–132. doi:10.1007/s00031-005-1003-y. http://arxiv.org/abs/math/0112035.
- Okounkov, A. “BC-Type Interpolation Macdonald Polynomials and Binomial Formula for Koornwinder Polynomials.” Transformation Groups 3, no. 2 (June 1998): 181–207. doi:10.1007/BF01236432.