"Seiberg-Witten theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
8번째 줄: 8번째 줄:
  
 
==4-manifolds==
 
==4-manifolds==
 
 
* 1980's work of M. Freedman gave a new insight in the topological classification of simply connected compact 4-manifolds via their intersection forms
 
* 1980's work of M. Freedman gave a new insight in the topological classification of simply connected compact 4-manifolds via their intersection forms
 
* S.K. Donaldson succeeded in establishing criteria how the intersection form can prevent a topological 4-manifold from being smoothable
 
* S.K. Donaldson succeeded in establishing criteria how the intersection form can prevent a topological 4-manifold from being smoothable
15번째 줄: 14번째 줄:
  
 
==application to 4-manifolds==
 
==application to 4-manifolds==
 
 
* invariants of compact smooth 4-manifolds introduced by Witten (1994)
 
* invariants of compact smooth 4-manifolds introduced by Witten (1994)
  
 
 
  
 
 
 
 
 
 
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
  
 
==related items==
 
==related items==
 
+
* [[N=2 supersymmetric theory in d=4]]
 
 
 
 
  
 
 
  
 
==encyclopedia==
 
==encyclopedia==
42번째 줄: 27번째 줄:
 
* http://en.wikipedia.org/wiki/Seiberg%E2%80%93Witten_gauge_theory
 
* http://en.wikipedia.org/wiki/Seiberg%E2%80%93Witten_gauge_theory
 
* http://en.wikipedia.org/wiki/Seiberg%E2%80%93Witten_invariant
 
* http://en.wikipedia.org/wiki/Seiberg%E2%80%93Witten_invariant
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
 
  
 
 
  
 
 
  
==books==
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
  
 
 
 
 
  
 
==expositions==
 
==expositions==
 
 
* Bohn, Michael. 2007. “An introduction to Seiberg-Witten theory on closed 3-manifolds”. <em>0706.3604</em> (6월 25). http://arxiv.org/abs/0706.3604
 
* Bohn, Michael. 2007. “An introduction to Seiberg-Witten theory on closed 3-manifolds”. <em>0706.3604</em> (6월 25). http://arxiv.org/abs/0706.3604
 +
* Lerche, W. 1997. “Introduction to Seiberg-Witten Theory and Its Stringy Origin.” Fortschritte Der Physik. Progress of Physics 45 (3-4): 293–340. doi:10.1002/prop.2190450304.
  
 
 
 
==articles==
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://math.stackexchange.com/search?q=
 
* http://physics.stackexchange.com/search?q=
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
  
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:gauge theory]]
 
[[분류:gauge theory]]

2013년 12월 16일 (월) 08:02 판

introduction

  • Vortices and Monopoles and Instantons
  • After describing the gauge theory of Electromagnetism, we shall define the 4-dimensional Seiberg-Witten invariant (sweeping much technical structure under the rug) and discuss its topological properties.
  • Then we'll backtrack and try to see how this physics beast was born.

 

 

4-manifolds

  • 1980's work of M. Freedman gave a new insight in the topological classification of simply connected compact 4-manifolds via their intersection forms
  • S.K. Donaldson succeeded in establishing criteria how the intersection form can prevent a topological 4-manifold from being smoothable


application to 4-manifolds

  • invariants of compact smooth 4-manifolds introduced by Witten (1994)


related items

 


encyclopedia



 

expositions

  • Bohn, Michael. 2007. “An introduction to Seiberg-Witten theory on closed 3-manifolds”. 0706.3604 (6월 25). http://arxiv.org/abs/0706.3604
  • Lerche, W. 1997. “Introduction to Seiberg-Witten Theory and Its Stringy Origin.” Fortschritte Der Physik. Progress of Physics 45 (3-4): 293–340. doi:10.1002/prop.2190450304.