"Simple exclusion process"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
5번째 줄: | 5번째 줄: | ||
+ | |||
+ | |||
+ | |||
+ | Bethe Ansatz and Exclusion Processes http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=39328&date=2011-02-01 | ||
Stochastic growth models in the plane | Stochastic growth models in the plane | ||
12번째 줄: | 16번째 줄: | ||
Consider the rescaling | Consider the rescaling | ||
− | h^{\epsion}(x,t)=\epsilon h(\frac{x}{\epsilon},\frac{ | + | h^{\epsion}(x,t)=\epsilon h(\frac{x}{\epsilon},\frac{t}{\epsilon}) |
+ | |||
+ | Then we expect to have | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | After some scaling argument, one may use KPZ equation to justify \epsilon^{2/3} as the order og the fluctua | ||
2011년 2월 2일 (수) 08:29 판
introduction
- Heisenberg spin chain model
- can be viewed as a exclusion process (time evolution)
Bethe Ansatz and Exclusion Processes http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=39328&date=2011-02-01
Stochastic growth models in the plane
For aimple case, consider a graph of a random height function h.
Consider the rescaling
h^{\epsion}(x,t)=\epsilon h(\frac{x}{\epsilon},\frac{t}{\epsilon})
Then we expect to have
After some scaling argument, one may use KPZ equation to justify \epsilon^{2/3} as the order og the fluctua
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field