"Minors and plucker relations"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
3번째 줄: 3번째 줄:
 
 
 
 
  
<math>\Delta _{1,2}\Delta _{12,13}=\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}</math>
+
<h5>introduction</h5>
  
 
# (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm<br> Minors[mat] // MatrixForm<br> Minors[mat, 1] // MatrixForm<br> Minors[mat, 2] // MatrixForm<br> Minors[mat, 3] // MatrixForm
 
# (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm<br> Minors[mat] // MatrixForm<br> Minors[mat, 1] // MatrixForm<br> Minors[mat, 2] // MatrixForm<br> Minors[mat, 3] // MatrixForm
9번째 줄: 9번째 줄:
  
 
 
 
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>Ptolemy relation</h5>
 +
 +
<math>\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}</math>
 +
 +
# T := {{Subscript[a, 1, 1], Subscript[a, 1, 2], Subscript[a, 1, 3],<br>    Subscript[a, 1, 4]}, {Subscript[a, 2, 1], Subscript[a, 2, 2],<br>    Subscript[a, 2, 3], Subscript[a, 2, 4]}}<br> Minor[i_, j_] := Det[{Transpose[T][[i]], Transpose[T][[j]]}]<br> Minor[1, 2]
 +
# Simplify[Minor[1, 2] Minor[3, 4] + Minor[1, 4] Minor[2, 3]]<br> Simplify[Minor[1, 3] Minor[2, 4]]
 +
 +
 
 +
 +
 
 +
 +
<h5>Plucker relations</h5>
 +
 +
<math>\Delta _{1,2}\Delta _{12,13}=\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}</math>
  
 
# \Delta _{12,12}\text{:=}-a_{1,2} a_{2,1}+a_{1,1} a_{2,2}\Delta _{12,23}\text{:=}-a_{1,3} a_{2,2}+a_{1,2} a_{2,3}\Delta _{1,3}\text{:=}a_{1,1}\Delta _{1,3}\text{:=}a_{1,3}\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}
 
# \Delta _{12,12}\text{:=}-a_{1,2} a_{2,1}+a_{1,1} a_{2,2}\Delta _{12,23}\text{:=}-a_{1,3} a_{2,2}+a_{1,2} a_{2,3}\Delta _{1,3}\text{:=}a_{1,1}\Delta _{1,3}\text{:=}a_{1,3}\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}

2011년 3월 9일 (수) 06:20 판

http://www.math.msu.edu/~magyar/papers/MinorIdentities.pdf

 

introduction
  1. (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm
    Minors[mat] // MatrixForm
    Minors[mat, 1] // MatrixForm
    Minors[mat, 2] // MatrixForm
    Minors[mat, 3] // MatrixForm
  2. Simplify[Subscript[a, 1,
       3]*(-Subscript[a, 1, 2] Subscript[a, 2, 1] +
         Subscript[a, 1, 1] Subscript[a, 2, 2]) +
      Subscript[a, 1,
       1]*(-Subscript[a, 1, 3] Subscript[a, 2, 2] +
         Subscript[a, 1, 2] Subscript[a, 2, 3])]

 

 

 

 

Ptolemy relation

\(\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}\)

  1. T := {{Subscript[a, 1, 1], Subscript[a, 1, 2], Subscript[a, 1, 3],
       Subscript[a, 1, 4]}, {Subscript[a, 2, 1], Subscript[a, 2, 2],
       Subscript[a, 2, 3], Subscript[a, 2, 4]}}
    Minor[i_, j_] := Det[{Transpose[T]i, Transpose[T]j}]
    Minor[1, 2]
  2. Simplify[Minor[1, 2] Minor[3, 4] + Minor[1, 4] Minor[2, 3]]
    Simplify[Minor[1, 3] Minor[2, 4]]

 

 

Plucker relations

\(\Delta _{1,2}\Delta _{12,13}=\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}\)

  1. \Delta _{12,12}\text{:=}-a_{1,2} a_{2,1}+a_{1,1} a_{2,2}\Delta _{12,23}\text{:=}-a_{1,3} a_{2,2}+a_{1,2} a_{2,3}\Delta _{1,3}\text{:=}a_{1,1}\Delta _{1,3}\text{:=}a_{1,3}\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}