"Beilinson conjectures"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
35번째 줄: 35번째 줄:
 
* Beilinson, A. A. 1987. “Height Pairing between Algebraic Cycles.” In $K$-Theory, Arithmetic and Geometry (Moscow, 1984–1986), 1289:1–25. Lecture Notes in Math. Berlin: Springer. http://www.ams.org/mathscinet-getitem?mr=923131.
 
* Beilinson, A. A. 1987. “Height Pairing between Algebraic Cycles.” In $K$-Theory, Arithmetic and Geometry (Moscow, 1984–1986), 1289:1–25. Lecture Notes in Math. Berlin: Springer. http://www.ams.org/mathscinet-getitem?mr=923131.
 
* Beilinson, A. A. 1984. “Higher Regulators and Values of $L$-Functions.” In Current Problems in Mathematics, Vol. 24, 181–238. Itogi Nauki I Tekhniki. Moscow: Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. http://www.ams.org/mathscinet-getitem?mr=760999. http://dx.doi.org/10.1007/BF02105861
 
* Beilinson, A. A. 1984. “Higher Regulators and Values of $L$-Functions.” In Current Problems in Mathematics, Vol. 24, 181–238. Itogi Nauki I Tekhniki. Moscow: Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. http://www.ams.org/mathscinet-getitem?mr=760999. http://dx.doi.org/10.1007/BF02105861
 
+
* Beilinson, A. A. 1980. “Higher Regulators and Values of $L$-Functions of Curves.” Akademiya Nauk SSSR. Funktsional\cprime Ny\uı\ Analiz I Ego Prilozheniya 14 (2): 46–47.
  
 
[[분류:K-theory]]
 
[[분류:K-theory]]
 
[[분류:L-functions and L-values]]
 
[[분류:L-functions and L-values]]

2015년 1월 17일 (토) 18:06 판

introduction

  • generalizations of
  1. the Lichtenbaum conjectures for K-groups of number rings
  2. the Hodge conjecture
  3. the Tate conjecture about algebraic cycles
  4. the Birch and Swinnerton-Dyer conjecture about elliptic curves
  5. Bloch's conjecture about K2 of elliptic curves
  • the Beĭlinson conjectures describe the leading coefficients of L-series of varieties over number fields up to rational factors in terms of generalized regulators
    • the very general setting being for L-functions $L(s)$ associated to Chow motives over number fields
  • Bloch-Beilinson conjecture predicts that ranks of Chow groups of homologically trivial cycles should be related to orders of vanishing of L-functions.

related items


question and answers(Math Overflow)


expositions

articles

  • Lemma, Francesco. “On Higher Regulators of Siegel Threefolds II: The Connection to the Special Value.” arXiv:1409.8391 [math], September 30, 2014. http://arxiv.org/abs/1409.8391.
  • Miyazaki, Hiroyasu. “Special Values of Zeta Functions of Varieties over Finite Fields via Higher Chow Groups.” arXiv:1406.1390 [math], June 5, 2014. http://arxiv.org/abs/1406.1390.
  • Otsubo, Noriyuki. “On Special Values of Jacobi-Sum Hecke L-Functions.” arXiv:1404.7476 [math], April 29, 2014. http://arxiv.org/abs/1404.7476.
  • Brunault, François. 2006. “Version Explicite Du Théorème de Beilinson Pour La Courbe Modulaire.” Comptes Rendus Mathematique 343 (8) (October 15): 505–510. doi:10.1016/j.crma.2006.09.014.
  • Beilinson, A. A. 1987. “Height Pairing between Algebraic Cycles.” In $K$-Theory, Arithmetic and Geometry (Moscow, 1984–1986), 1289:1–25. Lecture Notes in Math. Berlin: Springer. http://www.ams.org/mathscinet-getitem?mr=923131.
  • Beilinson, A. A. 1984. “Higher Regulators and Values of $L$-Functions.” In Current Problems in Mathematics, Vol. 24, 181–238. Itogi Nauki I Tekhniki. Moscow: Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. http://www.ams.org/mathscinet-getitem?mr=760999. http://dx.doi.org/10.1007/BF02105861
  • Beilinson, A. A. 1980. “Higher Regulators and Values of $L$-Functions of Curves.” Akademiya Nauk SSSR. Funktsional\cprime Ny\uı\ Analiz I Ego Prilozheniya 14 (2): 46–47.