"Index theorem"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 (section 'articles' updated) |
||
15번째 줄: | 15번째 줄: | ||
==articles== | ==articles== | ||
+ | * Hosho Katsura, Tohru Koma, The $Z_2$ Index of Disordered Topological Insulators with Time Reversal Symmetry, 10.1063/1.4942494, http://dx.doi.org/10.1063/1.4942494, J. Math. Phys. 57, 021903(2016), http://arxiv.org/abs/1508.05485v3 | ||
* Vergne, Michèle. “Formal Equivariant $\hat A$ Class, Splines and Multiplicities of the Index of Transversally Elliptic Operators.” arXiv:1211.5547 [math], November 23, 2012. http://arxiv.org/abs/1211.5547. | * Vergne, Michèle. “Formal Equivariant $\hat A$ Class, Splines and Multiplicities of the Index of Transversally Elliptic Operators.” arXiv:1211.5547 [math], November 23, 2012. http://arxiv.org/abs/1211.5547. | ||
* Baer, Christian, and Alexander Strohmaier. “A Rigorous Geometric Derivation of the Chiral Anomaly in Curved Backgrounds.” arXiv:1508.05345 [math-Ph], August 21, 2015. http://arxiv.org/abs/1508.05345. | * Baer, Christian, and Alexander Strohmaier. “A Rigorous Geometric Derivation of the Chiral Anomaly in Curved Backgrounds.” arXiv:1508.05345 [math-Ph], August 21, 2015. http://arxiv.org/abs/1508.05345. |
2016년 3월 2일 (수) 23:40 판
- Todd genus
- L-genus
- Elliptic genus
- Witten genus
- Supersymmetric quantum mechanics
- Atiyah-Bott fixed point theorem
- Lefschetz fixed point theorem
expositions
- http://ocw.u-tokyo.ac.jp/lecture?id=11330
- van Loon, Mark. “Path Integral Methods in Index Theorems.” arXiv:1509.03063 [math-Ph, Physics:quant-Ph], September 10, 2015. http://arxiv.org/abs/1509.03063.
- Zhang, Weiping. ‘The Mathematical Work of V. K. Patodi’. arXiv:1502.03637 [math], 12 February 2015. http://arxiv.org/abs/1502.03637.
articles
- Hosho Katsura, Tohru Koma, The $Z_2$ Index of Disordered Topological Insulators with Time Reversal Symmetry, 10.1063/1.4942494, http://dx.doi.org/10.1063/1.4942494, J. Math. Phys. 57, 021903(2016), http://arxiv.org/abs/1508.05485v3
- Vergne, Michèle. “Formal Equivariant $\hat A$ Class, Splines and Multiplicities of the Index of Transversally Elliptic Operators.” arXiv:1211.5547 [math], November 23, 2012. http://arxiv.org/abs/1211.5547.
- Baer, Christian, and Alexander Strohmaier. “A Rigorous Geometric Derivation of the Chiral Anomaly in Curved Backgrounds.” arXiv:1508.05345 [math-Ph], August 21, 2015. http://arxiv.org/abs/1508.05345.