"Cartan datum"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				imported>Pythagoras0   | 
				||
| 1번째 줄: | 1번째 줄: | ||
| + | Cartan datum <math>(A,P^{\vee},P,\Pi^{\vee},\Pi)</math>  | ||
| + | * <math>A=(a_{ij})_{i,j\in I}</math> GCM  | ||
| + | * <math>P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})</math> : co-weight lattice  | ||
| + | * <math>\mathfrak{h}=\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}</math> : Cartan subalgebra  | ||
| + | * <math>P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}</math> : weight lattice  | ||
| + | * <math>\Pi^{\vee}=\{h_{i}|i\in I\}</math> : simple coroots  | ||
| + | * <math>\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_{ji}\}</math> : simple roots  | ||
| + | |||
| + | |||
| + | |||
| + | fundamental weights  | ||
| + | |||
| + | <math>\{\Lambda_{i}\in\mathfrak{h}^{*}|i\in I, \Lambda_{i}(h_j)=\delta_{ij},\Lambda_{i}(d_j)=0\}</math>  | ||
| + | |||
| + | <math>Q=\bigoplus_{i\in I}\mathbb{Z}\alpha_{i}</math> : root lattice  | ||
| + | |||
| + | |||
| + | |||
| + | Weyl group <math>W=\langle r_{i}|i\in I\rangle</math>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | ==세르 관계식==  | ||
| + | |||
| + | * l : 리대수 <math>\mathfrak{g}</math>의 rank   | ||
| + | * <math>(a_{ij})</math> : 카르탄 행렬  | ||
| + | * 생성원 <math>e_i,h_i,f_i , (i=1,2,\cdots, l)</math>  | ||
| + | *  세르 관계식<br>  | ||
| + | ** <math>\left[h_i,h_j\right]=0</math>  | ||
| + | ** <math>\left[e_i,f_j\right]=\delta _{i,j}h_i</math>  | ||
| + | ** <math>\left[h_i,e_j\right]=a_{i,j}e_j</math>  | ||
| + | ** <math>\left[h_i,f_j\right]=-a_{i,j}f_j</math>  | ||
| + | ** <math>\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0</math> (<math>i\neq j</math>)  | ||
| + | ** <math>\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0</math> (<math>i\neq j</math>)  | ||
| + | [[분류:Lie theory]]  | ||
| + | [[분류:migrate]]  | ||
2020년 11월 13일 (금) 05:48 판
Cartan datum \((A,P^{\vee},P,\Pi^{\vee},\Pi)\)
- \(A=(a_{ij})_{i,j\in I}\) GCM
 - \(P^{\vee}=(\bigoplus_{i\in I}\mathbb{Z}h_{i})\bigoplus(\bigoplus_{j=1}^{\operatorname{corank}(A)}\mathbb{Z}d_{j})\) : co-weight lattice
 - \(\mathfrak{h}=\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}\) : Cartan subalgebra
 - \(P=\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}\) : weight lattice
 - \(\Pi^{\vee}=\{h_{i}|i\in I\}\) : simple coroots
 - \(\Pi=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_{ji}\}\) : simple roots
 
fundamental weights
\(\{\Lambda_{i}\in\mathfrak{h}^{*}|i\in I, \Lambda_{i}(h_j)=\delta_{ij},\Lambda_{i}(d_j)=0\}\)
\(Q=\bigoplus_{i\in I}\mathbb{Z}\alpha_{i}\) : root lattice
Weyl group \(W=\langle r_{i}|i\in I\rangle\)
세르 관계식
- l : 리대수 \(\mathfrak{g}\)의 rank
 - \((a_{ij})\) : 카르탄 행렬
 - 생성원 \(e_i,h_i,f_i , (i=1,2,\cdots, l)\)
 - 세르 관계식
- \(\left[h_i,h_j\right]=0\)
 - \(\left[e_i,f_j\right]=\delta _{i,j}h_i\)
 - \(\left[h_i,e_j\right]=a_{i,j}e_j\)
 - \(\left[h_i,f_j\right]=-a_{i,j}f_j\)
 - \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
 - \(\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0\) (\(i\neq j\))