"Constrained system : U(1) pure gauge theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | + | <h5>introduction</h5> | |
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | impose the constraint condition to remove negative norm states | + | * U(1) pure gauge theory : theory of light (without matter)<br><math>\mathcal{L}_{\text{free}} = - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}</math><br> |
− | + | * quantization of the photon field [http://www.ecm.ub.es/%7Eespriu/teaching/classes/fae/LECT4.pdf http://www.ecm.ub.es/~espriu/teaching/classes/fae/LECT4.pdf]<br> | |
− | we get a Hilbert space of physical states | + | ** fix the gauge |
− | + | ** quantize unconstrained system | |
− | Gupta-Bleuler Method http://en.wikipedia.org/wiki/Gupta%E2%80%93Bleuler_formalism | + | ** gives physical and unphysical states (negative norm states) |
+ | ** impose the constraint condition to remove negative norm states | ||
+ | ** we get a Hilbert space of physical states | ||
+ | * Gupta-Bleuler Method [http://en.wikipedia.org/wiki/Gupta%E2%80%93Bleuler_formalism http://en.wikipedia.org/wiki/Gupta–Bleuler_formalism] | ||
36번째 줄: | 23번째 줄: | ||
<math>\mathcal{L}_{\text{free}} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}</math> | <math>\mathcal{L}_{\text{free}} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
56번째 줄: | 37번째 줄: | ||
<h5>related items</h5> | <h5>related items</h5> | ||
+ | |||
+ | * [[no-ghost theorem and the construction of moonshine module and monster Lie algbera]] | ||
2011년 9월 24일 (토) 06:22 판
introduction
- U(1) pure gauge theory : theory of light (without matter)
\(\mathcal{L}_{\text{free}} = - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}\) - quantization of the photon field http://www.ecm.ub.es/~espriu/teaching/classes/fae/LECT4.pdf
- fix the gauge
- quantize unconstrained system
- gives physical and unphysical states (negative norm states)
- impose the constraint condition to remove negative norm states
- we get a Hilbert space of physical states
- Gupta-Bleuler Method http://en.wikipedia.org/wiki/Gupta–Bleuler_formalism
remark
if matter exists, we get QED
\(\mathcal{L}_{\text{free}} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}\)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field