"Half-integral weight modular forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
16번째 줄: 16번째 줄:
  
 
<math>j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}</math> for <math>\gamma \in \Gamma_0(4)</math>
 
<math>j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}</math> for <math>\gamma \in \Gamma_0(4)</math>
 +
 +
 
 +
 +
<math>j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}</math>
  
 
 
 
 

2009년 8월 18일 (화) 05:54 판

\(\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{N} \right\}\)

 

 

\(\Gamma_0(4)\)

\(\epsilon_d = \begin{cases} 1 \mbox{ if }d\equiv 1 \pmod{4} \\i \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)

\(\sqrt z\) has branch in \((-\pi/2, \pi/2]\)

 

Define

\(j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}\) for \(\gamma \in \Gamma_0(4)\)

 

\(j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}\)

 

 

 

W. Kohnen, Fourier coefficients of modular forms of half-integral weight. Math. Ann. 271 (1985),
237–268.

 

serre-stark_1976.pdf

Modular functions of one variable VI

 

Fourier coefficients of modular forms of half-integral weight

Inventiones Mathematicae
Volume 87, Number 2 / 1987년 6월

Henryk Iwaniec