"Half-integral weight modular forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
64번째 줄: 64번째 줄:
  
 
==expositions==
 
==expositions==
 +
* Notes on modular forms of half-integral weight http://wwwf.imperial.ac.uk/~buzzard/maths/research/notes/modular_forms_of_half_integral_weight.pdf
 
* Funke, Jens. "CM points and weight 3/2 modular forms." Analytic Number Theory (2007): 107. https://www.maths.dur.ac.uk/~dma0jf/G-D-proceedings-funke.pdf
 
* Funke, Jens. "CM points and weight 3/2 modular forms." Analytic Number Theory (2007): 107. https://www.maths.dur.ac.uk/~dma0jf/G-D-proceedings-funke.pdf
 
  
 
==articles==
 
==articles==

2015년 6월 12일 (금) 18:44 판

introduction

 

 

 

\(\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{N} \right\}\)

 

 

\(\Gamma_0(4)\)

generated by \(-I, T, ST^{-4}S\)

 

Define

\(\epsilon_d = \begin{cases} 1 \mbox{ if }d\equiv 1 \pmod{4} \\i \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)

\(\sqrt z\) has branch in \((-\pi/2, \pi/2]\)

 

Define

\(j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}\) for \(\gamma \in \Gamma_0(4)\)

 

Check

\(j(\alpha\beta,z)=j(\alpha,\beta z)j(\beta,z)\)

\(j(\gamma, z)^2=\begin{cases} {cz+d} \mbox{ if }d\equiv 1 \pmod{4} \\ -(cz+d) \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)

 

action

For \(\xi=(\alpha, \phi(z))\) and function \(f\) on the upper half plane

\(f(z)|[\xi]_{k/2}:=f(\alpha z)\phi(z)^{-k}\)

 

 

unary theta functions of weight 1/2

 

 

theta functions of weight 3/2

 

expositions

articles