"Surfaces with punctures"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
7번째 줄: 7번째 줄:
 
 
 
 
  
==notions</h5>
+
==notions==
  
 
* once-punctured monogon
 
* once-punctured monogon
19번째 줄: 19번째 줄:
 
 
 
 
  
==tagged triangulation</h5>
+
==tagged triangulation==
  
 
*  two tagged arcs are compatible if<br> (i) they do not cross<br> (ii) they are not isotopic except<br>
 
*  two tagged arcs are compatible if<br> (i) they do not cross<br> (ii) they are not isotopic except<br>
29번째 줄: 29번째 줄:
 
 
 
 
  
==tagged arc complex</h5>
+
==tagged arc complex==
  
 
tagged arc complex is the clique complex where simplices are collections of compatible tagged arcs
 
tagged arc complex is the clique complex where simplices are collections of compatible tagged arcs
53번째 줄: 53번째 줄:
 
 
 
 
  
== </h5>
+
== ==

2012년 10월 28일 (일) 14:48 판

surface with punctures

replace ideal triangulation by tagged triangulation

 

 

notions

  • once-punctured monogon
  • once-punctured n-gon
  • self-folded
  • tagged arc
  • radius

 

 

tagged triangulation

  • two tagged arcs are compatible if
    (i) they do not cross
    (ii) they are not isotopic except
  • tagged triangulation
    • maximal collection of compatible tagged arcs

 

 

tagged arc complex

tagged arc complex is the clique complex where simplices are collections of compatible tagged arcs

 

 

\Theorem (Fomin, Shapiro, Thurston)

(S,M) any marked surface.  Then there exists a cluster algebra associated to it,

tagged arc complex = cluster complex

tagged arcs,- <=> cluster variables 

tagged flips <-> mutations