"Monoidal categorifications of cluster algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
40번째 줄: 40번째 줄:
 
<h5>Caldero-Chapoton formula</h5>
 
<h5>Caldero-Chapoton formula</h5>
  
 
+
CC(V) =\chi_{V}
  
 
 
 
 
100번째 줄: 100번째 줄:
  
 
* Keller, Bernhard. 2008. “Cluster algebras, quiver representations and triangulated categories”. <em>0807.1960</em> (7월 12). [http://arxiv.org/abs/0807.1960. ]http://arxiv.org/abs/0807.1960.
 
* Keller, Bernhard. 2008. “Cluster algebras, quiver representations and triangulated categories”. <em>0807.1960</em> (7월 12). [http://arxiv.org/abs/0807.1960. ]http://arxiv.org/abs/0807.1960.
* Cluster algebras, quiver representations
+
* [http://www.math.jussieu.fr/%7Ekeller/publ/Reisensburg.pdf Cluster algebras and quiver representations], Keller, Bernhard, 2006
 
* [http://www.mpim-bonn.mpg.de/node/365 Total positivity, cluster algebras and categorification]
 
* [http://www.mpim-bonn.mpg.de/node/365 Total positivity, cluster algebras and categorification]
  
109번째 줄: 109번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
  
 +
*  Rupel, Dylan. 2010. “On Quantum Analogue of The Caldero-Chapoton Formula”. <em>1003.2652</em> (3월 12). doi:doi:10.1093/imrn/rnq192. http://arxiv.org/abs/1003.2652.<br>  <br>
 
* Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. <em>math/0604054</em> (4월 3). http://arxiv.org/abs/math/0604054.
 
* Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. <em>math/0604054</em> (4월 3). http://arxiv.org/abs/math/0604054.
 
+
* Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. <em>math/0410187</em> (10월 7). http://arxiv.org/abs/math/0410187.
 
 
 
 
 
 
 
 
* Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. <em>math/0410187</em> (10월 7). http://arxiv.org/abs/math/0410187.<br>  <br>
 
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://www.zentralblatt-math.org/zmath/en/

2011년 4월 13일 (수) 05:13 판

introduction
  • replace cluster variables by modules

 

 

notions
  • quiver : oriented graph
  • represetation of a quiver : collection of vector space and linear maps between them
  • homomorphism of 2 quiver representations
  • path algebra of a quiver
    • given a quiver Q, a path p is a sequence of arrows with some conditions
    • path algebra : set of all k-linear combinations of all paths (including e_i's)
    • p_1p_2 will correspond to a composition \(p_2\circ p_1\) of two maps (\(U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W\))
  • quiver representation is in fact, a representaion of path algebra of a quiver

 

 

finite type quiver classfication
  • quiver has finite type of there are finitely many indecomposables

 

 

\thm (Gabriel)

A connected quiver Q has finite type iff corresponding graph is Dynking diagram (A,D,E)

 

 

Caldero-Chapoton formula

CC(V) =\chi_{V}

 

 

periodicity conjecture

outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

blogs

 

 

experts on the field

 

 

links