"Monoidal categorifications of cluster algebras"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
encyclopedia==
		
	
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)  | 
				imported>Pythagoras0  잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)  | 
				||
| 1번째 줄: | 1번째 줄: | ||
| − | ==introduction  | + | ==introduction==  | 
* replace cluster variables by modules  | * replace cluster variables by modules  | ||
| 7번째 줄: | 7번째 줄: | ||
| − | ==notions  | + | ==notions==  | 
* quiver : oriented graph  | * quiver : oriented graph  | ||
| 22번째 줄: | 22번째 줄: | ||
| − | ==Caldero-Chapoton formula  | + | ==Caldero-Chapoton formula==  | 
* CC(V) =\chi_{V}  | * CC(V) =\chi_{V}  | ||
| 30번째 줄: | 30번째 줄: | ||
| − | ==monoidal categorification  | + | ==monoidal categorification==  | 
M : monoidal categorification  | M : monoidal categorification  | ||
| 62번째 줄: | 62번째 줄: | ||
| − | ==periodicity conjecture  | + | ==periodicity conjecture==  | 
* outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams  | * outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams  | ||
| 72번째 줄: | 72번째 줄: | ||
| − | ==history  | + | ==history==  | 
* http://www.google.com/search?hl=en&tbs=tl:1&q=  | * http://www.google.com/search?hl=en&tbs=tl:1&q=  | ||
| 80번째 줄: | 80번째 줄: | ||
| − | ==related items  | + | ==related items==  | 
* [[quiver representations|Quiver representations]]  | * [[quiver representations|Quiver representations]]  | ||
| 89번째 줄: | 89번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==  | 
* http://en.wikipedia.org/wiki/  | * http://en.wikipedia.org/wiki/  | ||
| 101번째 줄: | 101번째 줄: | ||
| − | ==books  | + | ==books==  | 
| 113번째 줄: | 113번째 줄: | ||
| − | ==expositions  | + | ==expositions==  | 
* Leclerc, Bernard. 2011. “Quantum loop algebras, quiver varieties, and cluster algebras”. <em>1102.1076</em> (2월 5). http://arxiv.org/abs/1102.1076.  | * Leclerc, Bernard. 2011. “Quantum loop algebras, quiver varieties, and cluster algebras”. <em>1102.1076</em> (2월 5). http://arxiv.org/abs/1102.1076.  | ||
| 124번째 줄: | 124번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==  | 
* David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401  | * David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401  | ||
| 143번째 줄: | 143번째 줄: | ||
| − | ==question and answers(Math Overflow)  | + | ==question and answers(Math Overflow)==  | 
* http://mathoverflow.net/search?q=  | * http://mathoverflow.net/search?q=  | ||
| 152번째 줄: | 152번째 줄: | ||
| − | ==blogs  | + | ==blogs==  | 
*  구글 블로그 검색<br>  | *  구글 블로그 검색<br>  | ||
| 163번째 줄: | 163번째 줄: | ||
| − | ==experts on the field  | + | ==experts on the field==  | 
* http://arxiv.org/  | * http://arxiv.org/  | ||
| 171번째 줄: | 171번째 줄: | ||
| − | ==links  | + | ==links==  | 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]  | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]  | ||
2012년 10월 28일 (일) 14:38 판
introduction
- replace cluster variables by modules
 
notions
- quiver : oriented graph
 - representation of a quiver : collection of vector space and linear maps between them
 - homomorphism of 2 quiver representations
 - path algebra of a quiver
- given a quiver Q, a path p is a sequence of arrows with some conditions
 - path algebra : set of all k-linear combinations of all paths (including e_i's)
 - p_1p_2 will correspond to a composition \(p_2\circ p_1\) of two maps (\(U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W\))
 
 - quiver representation is in fact, a representaion of path algebra of a quiver
 
Caldero-Chapoton formula
- CC(V) =\chi_{V}
 
monoidal categorification
M : monoidal categorification
M is a monoidal categorification of A if the Grothendieck ring of M is isomorphic to A and if
(i) cluster monomials' of A are the classes of real simple objects of M
(ii) cluster variables' of a (including coefficients) are classes of real prime simple objects
\prop
Suppose that A has a monoidal categorification M and also that each object B in M has unique finite composition series
(find simple subobject A_1, then simple subobject of A_2 of B/A_1, etc ... composition series if colleciton of all A's)
Then
(i) each cluster variable of a has positivie Laurent expansion with respect to any cluster
(ii) cluster monomials are linearly independent
periodicity conjecture
- outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams
 
history
encyclopedia==
- http://en.wikipedia.org/wiki/
 
- http://www.scholarpedia.org/
 
- http://eom.springer.de
 
- http://www.proofwiki.org/wiki/
 
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
 
 
books
 
 
 
expositions
- Leclerc, Bernard. 2011. “Quantum loop algebras, quiver varieties, and cluster algebras”. 1102.1076 (2월 5). http://arxiv.org/abs/1102.1076.
 
- Keller, Bernhard. 2008. “Cluster algebras, quiver representations and triangulated categories”. 0807.1960 (7월 12). http://arxiv.org/abs/0807.1960.
 
- Cluster algebras and quiver representations, Keller, Bernhard, 2006
 
- Total positivity, cluster algebras and categorification
 
 
 
articles==
- David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401
 
- Nakajima, Hiraku. 2011. “Quiver varieties and cluster algebras”. Kyoto Journal of Mathematics 51 (1): 71-126. doi:10.1215/0023608X-2010-021.
 
- Rupel, Dylan. 2010. “On Quantum Analogue of The Caldero-Chapoton Formula”. 1003.2652 (3월 12). doi:doi:10.1093/imrn/rnq192. http://arxiv.org/abs/1003.2652.
 
- Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. math/0604054 (4월 3). http://arxiv.org/abs/math/0604054.
 
- Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. math/0410187 (10월 7). http://arxiv.org/abs/math/0410187.
  
 
- http://www.ams.org/mathscinet
 
- http://www.zentralblatt-math.org/zmath/en/
 
- http://arxiv.org/
 
- http://www.pdf-search.org/
 
- http://pythagoras0.springnote.com/
 
- http://math.berkeley.edu/~reb/papers/index.html
 
- http://dx.doi.org/
 
 
 
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
 
- http://mathoverflow.net/search?q=
 
- http://math.stackexchange.com/search?q=
 
- http://math.stackexchange.com/search?q=
 
 
blogs
- 구글 블로그 검색
 
- http://ncatlab.org/nlab/show/HomePage
 
 
 
experts on the field
 
 
links
- David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401
 - Nakajima, Hiraku. 2011. “Quiver varieties and cluster algebras”. Kyoto Journal of Mathematics 51 (1): 71-126. doi:10.1215/0023608X-2010-021.
 - Rupel, Dylan. 2010. “On Quantum Analogue of The Caldero-Chapoton Formula”. 1003.2652 (3월 12). doi:doi:10.1093/imrn/rnq192. http://arxiv.org/abs/1003.2652.
 - Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. math/0604054 (4월 3). http://arxiv.org/abs/math/0604054.
 - Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. math/0410187 (10월 7). http://arxiv.org/abs/math/0410187.
 - http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/
 
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
 - http://mathoverflow.net/search?q=
 - http://math.stackexchange.com/search?q=
 - http://math.stackexchange.com/search?q=
 
blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage
 
experts on the field