"Monoidal categorifications of cluster algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
3번째 줄: 3번째 줄:
 
* replace cluster variables by modules
 
* replace cluster variables by modules
  
 
+
  
 
+
  
 
==notions==
 
==notions==
12번째 줄: 12번째 줄:
 
* representation of a quiver : collection of vector space and linear maps between them
 
* representation of a quiver : collection of vector space and linear maps between them
 
* homomorphism of 2 quiver representations
 
* homomorphism of 2 quiver representations
*  path algebra of a quiver<br>
+
*  path algebra of a quiver
 
** given a quiver Q, a path p is a sequence of arrows with some conditions
 
** given a quiver Q, a path p is a sequence of arrows with some conditions
 
** path algebra : set of all k-linear combinations of all paths (including e_i's)
 
** path algebra : set of all k-linear combinations of all paths (including e_i's)
** p_1p_2 will correspond to a composition <math>p_2\circ p_1</math> of two maps (<math>U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W</math>)
+
** p_1p_2 will correspond to a composition <math>p_2\circ p_1</math> of two maps (<math>U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W</math>)
 
* quiver representation is in fact, a representaion of path algebra of a quiver
 
* quiver representation is in fact, a representaion of path algebra of a quiver
  
 
+
  
 
+
  
 
==Caldero-Chapoton formula==
 
==Caldero-Chapoton formula==
26번째 줄: 26번째 줄:
 
* CC(V) =\chi_{V}
 
* CC(V) =\chi_{V}
  
 
+
  
 
+
  
 
==monoidal categorification==
 
==monoidal categorification==
40번째 줄: 40번째 줄:
 
(ii) cluster variables' of a (including coefficients) are classes of real prime simple objects
 
(ii) cluster variables' of a (including coefficients) are classes of real prime simple objects
  
 
+
  
 
+
  
 
\prop
 
\prop
56번째 줄: 56번째 줄:
 
(ii) cluster monomials are linearly independent
 
(ii) cluster monomials are linearly independent
  
 
+
  
 
+
  
 
+
  
 
==periodicity conjecture==
 
==periodicity conjecture==
66번째 줄: 66번째 줄:
 
* outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams
 
* outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams
  
 
 
  
 
+
 
 
 
 
  
 
==history==
 
==history==
76번째 줄: 73번째 줄:
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
  
 
+
  
 
==related items==
 
==related items==
 
 
* [[quiver representations|Quiver representations]]
 
* [[quiver representations|Quiver representations]]
 
* [[categorification of quantum groups]]
 
* [[categorification of quantum groups]]
  
 
 
 
 
 
 
==encyclopedia==
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
  
 
+
  
 
==expositions==
 
==expositions==
120번째 줄: 91번째 줄:
 
* [http://www.mpim-bonn.mpg.de/node/365 Total positivity, cluster algebras and categorification]
 
* [http://www.mpim-bonn.mpg.de/node/365 Total positivity, cluster algebras and categorification]
  
 
 
  
 
 
  
 
==articles==
 
==articles==
130번째 줄: 99번째 줄:
 
* Rupel, Dylan. 2010. “On Quantum Analogue of The Caldero-Chapoton Formula”. <em>1003.2652</em> (3월 12). doi:doi:10.1093/imrn/rnq192. http://arxiv.org/abs/1003.2652.
 
* Rupel, Dylan. 2010. “On Quantum Analogue of The Caldero-Chapoton Formula”. <em>1003.2652</em> (3월 12). doi:doi:10.1093/imrn/rnq192. http://arxiv.org/abs/1003.2652.
 
* Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. <em>math/0604054</em> (4월 3). http://arxiv.org/abs/math/0604054.
 
* Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. <em>math/0604054</em> (4월 3). http://arxiv.org/abs/math/0604054.
*  Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. <em>math/0410187</em> (10월 7). http://arxiv.org/abs/math/0410187.<br>  <br>
+
*  Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. <em>math/0410187</em> (10월 7). http://arxiv.org/abs/math/0410187.   
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
* http://math.stackexchange.com/search?q=
 
* http://math.stackexchange.com/search?q=
 
 
 
 
 
 
 
==blogs==
 
 
 
* 구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
 
 
 
==experts on the field==
 
 
 
* http://arxiv.org/
 
 
 
 
 
  
 
 
  
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/[[분류:개인노트]]
 
 
[[분류:cluster algebra]]
 
[[분류:cluster algebra]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math]]
 
[[분류:math]]

2013년 6월 24일 (월) 13:44 판

introduction

  • replace cluster variables by modules



notions

  • quiver : oriented graph
  • representation of a quiver : collection of vector space and linear maps between them
  • homomorphism of 2 quiver representations
  • path algebra of a quiver
    • given a quiver Q, a path p is a sequence of arrows with some conditions
    • path algebra : set of all k-linear combinations of all paths (including e_i's)
    • p_1p_2 will correspond to a composition \(p_2\circ p_1\) of two maps (\(U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W\))
  • quiver representation is in fact, a representaion of path algebra of a quiver



Caldero-Chapoton formula

  • CC(V) =\chi_{V}



monoidal categorification

M : monoidal categorification

M is a monoidal categorification of A if the Grothendieck ring of M is isomorphic to A and if

(i) cluster monomials' of A are the classes of real simple objects of M

(ii) cluster variables' of a (including coefficients) are classes of real prime simple objects



\prop

Suppose that A has a monoidal categorification M and also that each object B in M has unique finite composition series

(find simple subobject A_1, then simple subobject of A_2 of B/A_1, etc ... composition series if colleciton of all A's)

Then

(i) each cluster variable of a has positivie Laurent expansion with respect to any cluster

(ii) cluster monomials are linearly independent




periodicity conjecture

  • outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams



history



related items



expositions


articles

  • David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401
  • Nakajima, Hiraku. 2011. “Quiver varieties and cluster algebras”. Kyoto Journal of Mathematics 51 (1): 71-126. doi:10.1215/0023608X-2010-021.
  • Rupel, Dylan. 2010. “On Quantum Analogue of The Caldero-Chapoton Formula”. 1003.2652 (3월 12). doi:doi:10.1093/imrn/rnq192. http://arxiv.org/abs/1003.2652.
  • Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. math/0604054 (4월 3). http://arxiv.org/abs/math/0604054.
  • Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. math/0410187 (10월 7). http://arxiv.org/abs/math/0410187.