"Solitons"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
12번째 줄: 12번째 줄:
  
 
* [http://www.phys.hawaii.edu/%7Eteb/optics/java/toda/ http://www.phys.hawaii.edu/~teb/optics/java/toda/]
 
* [http://www.phys.hawaii.edu/%7Eteb/optics/java/toda/ http://www.phys.hawaii.edu/~teb/optics/java/toda/]
 +
 +
 
 +
 +
 
 +
 +
<h5>mathematica code</h5>
 +
 +
* [http://physics.ucsc.edu/%7Epeter/250/mathematica/ http://physics.ucsc.edu/~peter/250/mathematica/]<br>
 +
* [[5398019/attachments/3290823|soliton.nb]]
  
 
 
 
 

2010년 5월 12일 (수) 03:27 판

introduction
  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
  • numerically (Zabusky & Kruskal 1965).

 

 

toda lattice solitons

 

 

mathematica code

 

history

 

 

 

하위페이지

 

 

related items

 

 

books

 

 

encyclopedia

 

 

blogs

 

articles

Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave

Propagation. Lecture Notes in Mathematics, volume 1640,

pp. 70–102. New York: Springer.

Palais, R. S. 1997. The symmetries of solitons. Bulletin of the

American Mathematical Society 34:339–403.

Russell, J. S. 1844. Report on waves. In Report of the 14th

Meeting of the British Association for the Advancement of

Science, pp. 311–90. London: John Murray.

Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht:

Kluwer.

Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons

in a collisionless plasma and the recurrence of initial

states. Physics Review Letters 15:240–43.

 

TeX