"Solitons"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
 
*  numerically (Zabusky & Kruskal 1965).<br>
 
*  numerically (Zabusky & Kruskal 1965).<br>
 
** they discovered that solitons of differenct sizes interact cleanly
 
** they discovered that solitons of differenct sizes interact cleanly
 +
** interaction of two 1-soliton solutions
  
 
 
 
 
13번째 줄: 14번째 줄:
 
<h5>meaning of soliton</h5>
 
<h5>meaning of soliton</h5>
  
* "soliton" is used to describe their particle-like properties<br>
+
* "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
** boson
 
** fermion
 
** hadron
 
 
* any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)
 
* any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)
  
66번째 줄: 64번째 줄:
 
* [[solitons|soliton]]<br>
 
* [[solitons|soliton]]<br>
 
** [[Bäcklund transformation (backlund)|Bäcklund transformation]]<br>
 
** [[Bäcklund transformation (backlund)|Bäcklund transformation]]<br>
 +
** [[Frenkel-Kontorova dislocation]]<br>
 
** [[Hirota bilinear method|Hirota hierarchy]]<br>
 
** [[Hirota bilinear method|Hirota hierarchy]]<br>
 
** [[inverse scattering method]]<br>
 
** [[inverse scattering method]]<br>
72번째 줄: 71번째 줄:
 
** [[Nonlinear Schrodinger equation]]<br>
 
** [[Nonlinear Schrodinger equation]]<br>
 
** [[quantum sine-Gordon field theory]]<br>
 
** [[quantum sine-Gordon field theory]]<br>
 +
** [[restricted sine-Gordon theory]]<br>
 
** [[sine-Gordon equation]]<br>
 
** [[sine-Gordon equation]]<br>
** [[Toda lattice]]<br>
 
  
 
 
 
 
128번째 줄: 127번째 줄:
 
<h5>expositions</h5>
 
<h5>expositions</h5>
  
 +
* [http://arxiv.org/abs/0802.2408 Why are solitons stable?]<br>
 +
** Terence Tao, 2008
 +
* [http://xxx.lanl.gov/abs/q-alg/9712005 Five Lectures on Soliton Equations]<br>
 +
** Edward Frenkel, Submitted on 30 Nov 1997
 
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  http://dx.doi.org/10.1090/S0273-0979-97-00732-5
 
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  http://dx.doi.org/10.1090/S0273-0979-97-00732-5
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 A brief history of the quantum soliton with new results on the quantization of the Toda lattice]<br>
 
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 A brief history of the quantum soliton with new results on the quantization of the Toda lattice]<br>
138번째 줄: 141번째 줄:
 
<h5>articles</h5>
 
<h5>articles</h5>
  
* [http://arxiv.org/abs/0802.2408 Why are solitons stable?]<br>
 
** Terence Tao, 2008
 
 
* [http://dx.doi.org/10.1098/rspa.1999.0502%20 Solitons, Links and Knots]<br>
 
* [http://dx.doi.org/10.1098/rspa.1999.0502%20 Solitons, Links and Knots]<br>
 
** Richard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
 
** Richard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
* [http://xxx.lanl.gov/abs/q-alg/9712005 Five Lectures on Soliton Equations]<br>
 
** Edward Frenkel, Submitted on 30 Nov 1997
 
 
* [http://www.ams.org/journals/bull/1997-34-04/S0273-0979-97-00732-5/home.html The Symmetries of Solitons]<br>
 
* [http://www.ams.org/journals/bull/1997-34-04/S0273-0979-97-00732-5/home.html The Symmetries of Solitons]<br>
 
** Richard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
 
** Richard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403

2011년 1월 25일 (화) 04:40 판

introduction
  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
    • modelling of Russell's discovery
  • numerically (Zabusky & Kruskal 1965).
    • they discovered that solitons of differenct sizes interact cleanly
    • interaction of two 1-soliton solutions

 

 

meaning of soliton
  • "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
  • any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)

 

 

PDEs

 

 

important techniques

 

 

mathematica code

 

history

 

 

 

하위페이지

 

 

related items

 

 

books

 

 

encyclopedia

 

 

 

expositions

 

 

articles
  • Solitons, Links and Knots
    • Richard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
  • The Symmetries of Solitons
    • Richard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
  • From Solitons to Knots and Links
    • Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
  • Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
  • Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
  • Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
  • Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links