"Anomalous magnetic moment of electron"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (Pythagoras0 사용자가 Magnetic moment of electron 문서를 Anomalous magnetic moment of electron 문서로 옮겼습니다.) |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | |||
* amplitude = sum of integrals = <math>\sum_{n\text{ loops}}</math> sum of integrals | * amplitude = sum of integrals = <math>\sum_{n\text{ loops}}</math> sum of integrals | ||
* anomalous electron magnetic dipole moment 1.00115965219 | * anomalous electron magnetic dipole moment 1.00115965219 | ||
7번째 줄: | 6번째 줄: | ||
* integrals are becoming difficult | * integrals are becoming difficult | ||
+ | ===Lande's question=== | ||
+ | * Bohr magneton <math>\mu_0=e\hbar /2mc</math> | ||
+ | * spin magnetic dipole moment <math>\mu_s</math> | ||
+ | * Q. <math>\mu_s=\mu_0</math> ? (Back and Lande 1925) | ||
+ | * We define $g$ to be the gyromagnetic ratio | ||
+ | :<math>\mu_s=\frac{g\mu_0}{2}</math> | ||
12번째 줄: | 17번째 줄: | ||
* read [[spin system and Pauli exclusion principle|spin system]] first | * read [[spin system and Pauli exclusion principle|spin system]] first | ||
− | * | + | * gyromagnetic ratio is defined as "magnetic dipole moment"/"angular momentum" |
+ | :<math>\gamma = \mu/L=-e/2m_e</math> | ||
+ | [/pages/7141159/attachments/4562863 I15-62-g20.jpg] | ||
* pictures from [http://universe-review.ca/R15-12-QFT.htm#g2 Gyromagnetic Ratio and Anomalous Magnetic Moment] | * pictures from [http://universe-review.ca/R15-12-QFT.htm#g2 Gyromagnetic Ratio and Anomalous Magnetic Moment] | ||
+ | |||
+ | |||
+ | ===orbital=== | ||
+ | * Let $e$, $m_e$, $v$, and $r$ be the electron's charge, mass, velocity, and radius, respectively. | ||
+ | * A classical electron moving around a nucleus in a circular orbit | ||
+ | ** orbital angular momentum, <math>L=m_evr</math> | ||
+ | ** magnetic dipole moment, <math>\mu= -evr/2</math> | ||
+ | * we get $\gamma=\mu/L=-e/2m_e$ | ||
+ | |||
+ | ===spin=== | ||
+ | * A classical electron of homogeneous mass and charge density rotating about a symmetry axis | ||
+ | ** spin angular momentum, <math>L=(3/5)m_eR^2\Omega</math> | ||
+ | ** magnetic dipole moment, <math>\mu= -(3/10)eR^2\Omega</math>, where $R$ and $\Omega$ are the electron's classical radius and rotating frequency | ||
+ | * we get <math>\gamma = \mu/L=-e/2m_e</math> | ||
==anamalous electron magnetic dipole moment== | ==anamalous electron magnetic dipole moment== | ||
+ | ===Dirac theory=== | ||
+ | * In Dirac’s theory a point like spin 1/2 object of electric charge $q$ and mass $m$ has a magnetic moment | ||
+ | :<math>\mathbf{\mu}=q\mathbf{S}/m</math> | ||
+ | * so the Bohr magneton of the electron becomes | ||
+ | :<math>\mu_\mathrm{B} = {{e \hbar} \over {2 m_\mathrm{e}}}</math> since the spin of the electron is <math>S=\frac{\hbar}{2}</math> | ||
− | + | ||
− | + | ===g-factor=== | |
− | * | + | * there are correction terms to the spin magnetic moment of the electron as shown by experiments |
− | * | + | * actual spin magnetic moment of the electron involves the spin g-factor (gyromagnetic ratio) |
− | * | + | :<math>\vec{\mu}_S \ = g_e \mu_\mathrm{B} \frac{\vec{S}}{\hbar}=g\frac{e}{2 m_{e}} \ \vec{S}</math> |
+ | * The g factor sets the strength of an electron’s interaction with a magnetic field. | ||
− | |||
− | + | ===classical vs quantum=== | |
* In classical physics (left) magnetic lines of force (perpendicular to the page) induce a curvature in the electron’s path. | * In classical physics (left) magnetic lines of force (perpendicular to the page) induce a curvature in the electron’s path. | ||
* In quantum electrodynamics (right) the electron interacts with the field by emitting or absorbing a photon. | * In quantum electrodynamics (right) the electron interacts with the field by emitting or absorbing a photon. | ||
+ | [/pages/3589069/attachments/4562673 2004329152457_150.gif] | ||
+ | * vertex correction | ||
+ | $$g = 2 ( 1 + \alpha/2\pi)$$ where $$\alpha= e^2/(4\pi \hbar c) \sim 1/137.036$$ is the fine structure constant | ||
+ | * http://www.wolframalpha.com/input/?i=1%2F%28137*2pi%29 | ||
* The event is represented in a Feynman diagram, where space extends along the horizontal axis and time moves up the vertical axis. | * The event is represented in a Feynman diagram, where space extends along the horizontal axis and time moves up the vertical axis. | ||
− | + | $$g/2=1+c_1\frac{\alpha}{2\pi}+c_2(\frac{\alpha}{2\pi})^2+c_3(\frac{\alpha}{2\pi})^3+\cdots=1.00115965219+\cdots$$ | |
− | |||
− | |||
− | |||
* [http://docs.google.com/viewer?a=v&q=cache:5hOX9DCrL7sJ:www.physics.ohio-state.edu/%7Ekass/P780_L3_sp03.ppt+anamalous+magnetic+moment+electron+feynman+diagram&hl=ko&gl=us&pid=bl&srcid=ADGEEShmuOjISGxcCejbd6l7kWuRiTY7AtBHwKpZ_Zec4dSTPlJ8kqZSA80srABAl8PEFKnJJVfrawIHlkI0Z9S5wA1ArJMpmMERZp3I3ppK4BN5drRWx4mJi8VTW_wf8xjrs3v1VOqX&sig=AHIEtbTIAIEubf5ZHYPXPv4aE6ImvmxEVw http://docs.google.com/viewer?a=v&q=cache:5hOX9DCrL7sJ:www.physics.ohio-state.edu/~kass/P780_L3_sp03.ppt+anamalous+magnetic+moment+electron+feynman+diagram&hl=ko&gl=us&pid=bl&srcid=ADGEEShmuOjISGxcCejbd6l7kWuRiTY7AtBHwKpZ_Zec4dSTPlJ8kqZSA80srABAl8PEFKnJJVfrawIHlkI0Z9S5wA1ArJMpmMERZp3I3ppK4BN5drRWx4mJi8VTW_wf8xjrs3v1VOqX&sig=AHIEtbTIAIEubf5ZHYPXPv4aE6ImvmxEVw] | * [http://docs.google.com/viewer?a=v&q=cache:5hOX9DCrL7sJ:www.physics.ohio-state.edu/%7Ekass/P780_L3_sp03.ppt+anamalous+magnetic+moment+electron+feynman+diagram&hl=ko&gl=us&pid=bl&srcid=ADGEEShmuOjISGxcCejbd6l7kWuRiTY7AtBHwKpZ_Zec4dSTPlJ8kqZSA80srABAl8PEFKnJJVfrawIHlkI0Z9S5wA1ArJMpmMERZp3I3ppK4BN5drRWx4mJi8VTW_wf8xjrs3v1VOqX&sig=AHIEtbTIAIEubf5ZHYPXPv4aE6ImvmxEVw http://docs.google.com/viewer?a=v&q=cache:5hOX9DCrL7sJ:www.physics.ohio-state.edu/~kass/P780_L3_sp03.ppt+anamalous+magnetic+moment+electron+feynman+diagram&hl=ko&gl=us&pid=bl&srcid=ADGEEShmuOjISGxcCejbd6l7kWuRiTY7AtBHwKpZ_Zec4dSTPlJ8kqZSA80srABAl8PEFKnJJVfrawIHlkI0Z9S5wA1ArJMpmMERZp3I3ppK4BN5drRWx4mJi8VTW_wf8xjrs3v1VOqX&sig=AHIEtbTIAIEubf5ZHYPXPv4aE6ImvmxEVw] | ||
− | + | ||
+ | |||
==Feynmann diagrams== | ==Feynmann diagrams== | ||
56번째 줄: | 84번째 줄: | ||
===two-loop diagrams=== | ===two-loop diagrams=== | ||
− | * 7 two-loop diagrams<br>[/pages/3589069/attachments/4562669 2004329153354_150.gif]<br>[/pages/7141159/attachments/4562733 I15-62-g2c.jpg] | + | * 7 two-loop diagrams<br>[/pages/3589069/attachments/4562669 2004329153354_150.gif]<br>[/pages/7141159/attachments/4562733 I15-62-g2c.jpg] |
85번째 줄: | 113번째 줄: | ||
* [http://www.strings.ph.qmul.ac.uk/%7Ebigdraw/feynman/slide3.html http://www.strings.ph.qmul.ac.uk/~bigdraw/feynman/slide3.html][http://eskesthai.blogspot.com/2010/12/muon.html ] | * [http://www.strings.ph.qmul.ac.uk/%7Ebigdraw/feynman/slide3.html http://www.strings.ph.qmul.ac.uk/~bigdraw/feynman/slide3.html][http://eskesthai.blogspot.com/2010/12/muon.html ] | ||
− | |||
− | + | ==anaomalous muon magnetic dipole moment== | |
− | |||
− | |||
− | + | * anaomalous muon magnetic dipole moment is still unknown | |
+ | * http://eskesthai.blogspot.com/2010/12/muon.html | ||
− | |||
− | |||
− | |||
102번째 줄: | 125번째 줄: | ||
==memo== | ==memo== | ||
− | * [http://aias.us/documents/uft/a18thpaper.pdf Calculation of the Anomalous Magnetic Moment of the Electron from the Evans-Unified Field Theory] | + | * [http://aias.us/documents/uft/a18thpaper.pdf Calculation of the Anomalous Magnetic Moment of the Electron from the Evans-Unified Field Theory] |
120번째 줄: | 143번째 줄: | ||
* http://en.wikipedia.org/wiki/G-factor_%28physics%29 | * http://en.wikipedia.org/wiki/G-factor_%28physics%29 | ||
* http://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment | * http://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment | ||
+ | * http://en.wikipedia.org/wiki/Bohr_magneton | ||
− | |||
− | |||
==expositions== | ==expositions== | ||
128번째 줄: | 150번째 줄: | ||
* Brian Hayes, “g-OLOGY,” American Scientist 92, no. 3 (2004): 212. http://www.americanscientist.org/issues/num2/g-ology/1 | * Brian Hayes, “g-OLOGY,” American Scientist 92, no. 3 (2004): 212. http://www.americanscientist.org/issues/num2/g-ology/1 | ||
− | |||
− | |||
==articles== | ==articles== | ||
+ | * Broadhurst, D. J, and D. Kreimer. 1996. Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. hep-th/9609128 (September 16). doi:doi:[http://dx.doi.org/10.1016/S0370-2693%2896%2901623-1 10.1016/S0370-2693(96)01623-1]. http://arxiv.org/abs/hep-th/9609128. | ||
+ | * 1948 슈와잉거 (J. Schwinger, Phys.Rev. 73(1948) 416L) | ||
− | |||
− | + | ==books== | |
+ | * Mandl, Franz, and Graham Shaw. 2010. Quantum Field Theory. John Wiley & Sons. http://books.google.de/books/about/Quantum_Field_Theory.html?id=Ef4zDW1V2LkC&redir_esc=y | ||
+ | ** chapter 9 | ||
2013년 12월 18일 (수) 15:28 판
introduction
- amplitude = sum of integrals = \(\sum_{n\text{ loops}}\) sum of integrals
- anomalous electron magnetic dipole moment 1.00115965219
- theoretical computation matches 11 digits with experiments
- as n grows, number of Feynman diagrams grows exponentially
- integrals are becoming difficult
Lande's question
- Bohr magneton \(\mu_0=e\hbar /2mc\)
- spin magnetic dipole moment \(\mu_s\)
- Q. \(\mu_s=\mu_0\) ? (Back and Lande 1925)
- We define $g$ to be the gyromagnetic ratio
\[\mu_s=\frac{g\mu_0}{2}\]
classical magnetic moment
- read spin system first
- gyromagnetic ratio is defined as "magnetic dipole moment"/"angular momentum"
\[\gamma = \mu/L=-e/2m_e\] [/pages/7141159/attachments/4562863 I15-62-g20.jpg]
- pictures from Gyromagnetic Ratio and Anomalous Magnetic Moment
orbital
- Let $e$, $m_e$, $v$, and $r$ be the electron's charge, mass, velocity, and radius, respectively.
- A classical electron moving around a nucleus in a circular orbit
- orbital angular momentum, \(L=m_evr\)
- magnetic dipole moment, \(\mu= -evr/2\)
- we get $\gamma=\mu/L=-e/2m_e$
spin
- A classical electron of homogeneous mass and charge density rotating about a symmetry axis
- spin angular momentum, \(L=(3/5)m_eR^2\Omega\)
- magnetic dipole moment, \(\mu= -(3/10)eR^2\Omega\), where $R$ and $\Omega$ are the electron's classical radius and rotating frequency
- we get \(\gamma = \mu/L=-e/2m_e\)
anamalous electron magnetic dipole moment
Dirac theory
- In Dirac’s theory a point like spin 1/2 object of electric charge $q$ and mass $m$ has a magnetic moment
\[\mathbf{\mu}=q\mathbf{S}/m\]
- so the Bohr magneton of the electron becomes
\[\mu_\mathrm{B} = {{e \hbar} \over {2 m_\mathrm{e}}}\] since the spin of the electron is \(S=\frac{\hbar}{2}\)
g-factor
- there are correction terms to the spin magnetic moment of the electron as shown by experiments
- actual spin magnetic moment of the electron involves the spin g-factor (gyromagnetic ratio)
\[\vec{\mu}_S \ = g_e \mu_\mathrm{B} \frac{\vec{S}}{\hbar}=g\frac{e}{2 m_{e}} \ \vec{S}\]
- The g factor sets the strength of an electron’s interaction with a magnetic field.
classical vs quantum
- In classical physics (left) magnetic lines of force (perpendicular to the page) induce a curvature in the electron’s path.
- In quantum electrodynamics (right) the electron interacts with the field by emitting or absorbing a photon.
[/pages/3589069/attachments/4562673 2004329152457_150.gif]
- vertex correction
$$g = 2 ( 1 + \alpha/2\pi)$$ where $$\alpha= e^2/(4\pi \hbar c) \sim 1/137.036$$ is the fine structure constant
- http://www.wolframalpha.com/input/?i=1%2F%28137*2pi%29
- The event is represented in a Feynman diagram, where space extends along the horizontal axis and time moves up the vertical axis.
$$g/2=1+c_1\frac{\alpha}{2\pi}+c_2(\frac{\alpha}{2\pi})^2+c_3(\frac{\alpha}{2\pi})^3+\cdots=1.00115965219+\cdots$$
Feynmann diagrams
tree level and one-loop diagrams
- 1 one-loop diagram
[/pages/7141159/attachments/4563145 2004329152921_150.gif] - Feynman, Julian Schwinger, Sin-Itiro Tomonaga and Freeman Dyson
- Schwinger showed that the one-loop contribution to the "anomalous magnetic moment" of the electron is \(\alpha/{2\pi}=0.00116\cdots\)
- Schwinger, Julian. 1948. On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Physical Review 73, no. 4 (February 15): 416. doi:10.1103/PhysRev.73.416.
- http://www.wolframalpha.com/input/?i=fine+structure+constant%2F%282pi%29
two-loop diagrams
- 7 two-loop diagrams
[/pages/3589069/attachments/4562669 2004329153354_150.gif]
[/pages/7141159/attachments/4562733 I15-62-g2c.jpg]
three-loop diagrams
- 72 three-loop diagrams
- [/pages/3589069/attachments/4562671 200432915395_150.gif]
- Kinoshita, Toichiro. 1995. New Value of the alpha^{3} Electron Anomalous Magnetic Moment. Physical Review Letters 75, no. 26 (December 25): 4728. doi:10.1103/PhysRevLett.75.4728.
four-loop diagrams
- 891 diagrams
five-loop Feynman diagrams
- There are 12,672
- http://www.strings.ph.qmul.ac.uk/~bigdraw/feynman/slide3.html[1]
anaomalous muon magnetic dipole moment
- anaomalous muon magnetic dipole moment is still unknown
- http://eskesthai.blogspot.com/2010/12/muon.html
memo
computational resource
- number of Feynman diagrams http://oeis.org/A005413
encyclopedia
- http://en.wikipedia.org/wiki/G-factor_%28physics%29
- http://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment
- http://en.wikipedia.org/wiki/Bohr_magneton
expositions
- Xiaoyi, anomalous magnetic moment
- Brian Hayes, “g-OLOGY,” American Scientist 92, no. 3 (2004): 212. http://www.americanscientist.org/issues/num2/g-ology/1
articles
- Broadhurst, D. J, and D. Kreimer. 1996. Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. hep-th/9609128 (September 16). doi:doi:10.1016/S0370-2693(96)01623-1. http://arxiv.org/abs/hep-th/9609128.
- 1948 슈와잉거 (J. Schwinger, Phys.Rev. 73(1948) 416L)
books
- Mandl, Franz, and Graham Shaw. 2010. Quantum Field Theory. John Wiley & Sons. http://books.google.de/books/about/Quantum_Field_Theory.html?id=Ef4zDW1V2LkC&redir_esc=y
- chapter 9