"Kac-Wakimoto modules"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5> | ||
− | + | <math>sl(2|1)</math> | |
82번째 줄: | 82번째 줄: | ||
Kac V.G., Wakimoto M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. '''215'''(3), 631–682 (2001)<br>[http://www.emis.de/MATH-item?0980.17002 ] [http://dx.doi.org/10.1007/s002200000315 ] [http://www.ams.org/mathscinet-getitem?mr=1810948 ] | Kac V.G., Wakimoto M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. '''215'''(3), 631–682 (2001)<br>[http://www.emis.de/MATH-item?0980.17002 ] [http://dx.doi.org/10.1007/s002200000315 ] [http://www.ams.org/mathscinet-getitem?mr=1810948 ] | ||
+ | |||
+ | |||
+ | |||
+ | # Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA '''85''', 4956--4960(1988)[http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=0949675&loc=fromreflist MR0949675 (89j:17019)] | ||
+ | # Kac, V.G. and Wakimoto, M.: <em>Classification of modular invariant representations of affine algebras</em>. Advanced Ser. Math. Phys. '''7''', Singapore: World Sci., 1989, pp. 138--177 [http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1026952&loc=fromreflist MR1026952 (91a:17032)] | ||
+ | # Kac, V.G. and Wakimoto, M.: <em>Integrable highest weight modules over affine superalgebras and number theory</em>. Progress in Math. '''123''', Birkhäuser, Boston, 1994, pp. 415--456 [http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1327543&loc=fromreflist MR1327543 (96j:11056)] | ||
+ | |||
+ | |||
* <br> | * <br> |
2010년 3월 4일 (목) 09:12 판
introduction
\(sl(2|1)\)
history
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
blogs
- 구글 블로그 검색
articles
Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions, and modular forms. Adv. Math. 53, 125–264 (1984)
[1] [2] [3]
Kac V.G., Wakimoto M.: Integrable highest weight modules over affine superalgebras and number theory. Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)
Kac V.G., Wakimoto M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215(3), 631–682 (2001)
[4] [5] [6]
- Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA 85, 4956--4960(1988)MR0949675 (89j:17019)
- Kac, V.G. and Wakimoto, M.: Classification of modular invariant representations of affine algebras. Advanced Ser. Math. Phys. 7, Singapore: World Sci., 1989, pp. 138--177 MR1026952 (91a:17032)
- Kac, V.G. and Wakimoto, M.: Integrable highest weight modules over affine superalgebras and number theory. Progress in Math. 123, Birkhäuser, Boston, 1994, pp. 415--456 MR1327543 (96j:11056)
-
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[7]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
experts on the field