"Kac-Wakimoto modules"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction</h5> |
* Lie superalgebras<br> | * Lie superalgebras<br> | ||
13번째 줄: | 13번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">history</h5> |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
21번째 줄: | 21번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5> |
27번째 줄: | 27번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5> |
42번째 줄: | 42번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
54번째 줄: | 54번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">question and answers(Math Overflow)</h5> |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
64번째 줄: | 64번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs</h5> |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
75번째 줄: | 75번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> |
− | * Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions, and modular forms. Adv. Math. '''53''', 125–264 (1984)<br>[http://www.emis.de/MATH-item?0584.17007 ] [http://dx.doi.org/10.1016/0001-8708 | + | * Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions, and modular forms. Adv. Math. '''53''', 125–264 (1984)<br>[http://www.emis.de/MATH-item?0584.17007 ] [http://dx.doi.org/10.1016/0001-8708%2884%2990032-X ] [http://www.ams.org/mathscinet-getitem?mr=750341 ]<br> |
− | * | + | * [http://arxiv.org/abs/hep-th/9407057 Integrable highest weight modules over affine superalgebras and number theory]<br> |
+ | ** Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)<br> | ||
* Kac V.G., Wakimoto M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. '''215'''(3), 631–682 (2001)<br>[http://www.emis.de/MATH-item?0980.17002 ] [http://dx.doi.org/10.1007/s002200000315 ] [http://www.ams.org/mathscinet-getitem?mr=1810948 ]<br> | * Kac V.G., Wakimoto M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. '''215'''(3), 631–682 (2001)<br>[http://www.emis.de/MATH-item?0980.17002 ] [http://dx.doi.org/10.1007/s002200000315 ] [http://www.ams.org/mathscinet-getitem?mr=1810948 ]<br> | ||
* Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA '''85''', 4956--4960(1988)[http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=0949675&loc=fromreflist MR0949675 (89j:17019)]<br> | * Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA '''85''', 4956--4960(1988)[http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=0949675&loc=fromreflist MR0949675 (89j:17019)]<br> | ||
− | + | * Kac, V.G. and Wakimoto, M.: <em style="">Classification of modular invariant representations of affine algebras</em>. Advanced Ser. Math. Phys. '''7''', Singapore: World Sci., 1989, pp. 138--177 [http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1026952&loc=fromreflist MR1026952 (91a:17032)] | |
− | Kac, V.G. and Wakimoto, M.: <em style="">Classification of modular invariant representations of affine algebras</em>. Advanced Ser. Math. Phys. '''7''', Singapore: World Sci., 1989, pp. 138--177 [http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1026952&loc=fromreflist MR1026952 (91a:17032)] | ||
− | |||
− | |||
* [[2010년 books and articles|논문정리]] | * [[2010년 books and articles|논문정리]] | ||
* http://www.ams.org/mathscinet | * http://www.ams.org/mathscinet | ||
* http://www.zentralblatt-math.org/zmath/en/ | * http://www.zentralblatt-math.org/zmath/en/ | ||
* http://pythagoras0.springnote.com/ | * http://pythagoras0.springnote.com/ | ||
− | * http://math.berkeley.edu/~reb/papers/index.html[http://www.ams.org/mathscinet ] | + | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html][http://www.ams.org/mathscinet ] |
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | * http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | ||
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7= | * http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7= | ||
98번째 줄: | 96번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">experts on the field</h5> |
* http://arxiv.org/ | * http://arxiv.org/ | ||
106번째 줄: | 104번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">TeX </h5> |
2010년 3월 5일 (금) 09:33 판
introduction
- Lie superalgebras
- \(sl(2|1)\)
history
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
blogs
- 구글 블로그 검색
articles
- Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions, and modular forms. Adv. Math. 53, 125–264 (1984)
[1] [2] [3] - Integrable highest weight modules over affine superalgebras and number theory
- Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)
- Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)
- Kac V.G., Wakimoto M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215(3), 631–682 (2001)
[4] [5] [6] - Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA 85, 4956--4960(1988)MR0949675 (89j:17019)
- Kac, V.G. and Wakimoto, M.: Classification of modular invariant representations of affine algebras. Advanced Ser. Math. Phys. 7, Singapore: World Sci., 1989, pp. 138--177 MR1026952 (91a:17032)
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[7]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
experts on the field