"Appell-Lerch sums"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
10번째 줄: 10번째 줄:
  
 
==Appell-Lerch sum==
 
==Appell-Lerch sum==
 
+
* Appell–Lerch sums were first studied by [http://en.wikipedia.org/wiki/Paul_%C3%89mile_Appell Paul Émile Appell] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFAppell1884 1884]) and [http://en.wikipedia.org/wiki/Mathias_Lerch Mathias Lerch] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFLerch1892 1892]).  
Appell–Lerch sums were first studied by [http://en.wikipedia.org/wiki/Paul_%C3%89mile_Appell Paul Émile Appell] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFAppell1884 1884]) and [http://en.wikipedia.org/wiki/Mathias_Lerch Mathias Lerch] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFLerch1892 1892]). Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums, and Zwegers used them to show that mock theta functions are essentially mock modular forms.
+
* Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums
 
+
* Zwegers used them to show that mock theta functions are essentially mock modular forms.
+
* The Appell–Lerch series is
 
+
:<math>\mu(u,v;\tau) = \frac{a^{1/2}}{\theta(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}</math>
The Appell–Lerch series is
 
 
 
<math>\mu(u,v;\tau) = \frac{a^{1/2}}{\theta(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}</math>
 
 
 
 
 
 
 
where
 
where
 
+
:<math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math>
<math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math>
 
 
 
 
 
 
 
and
 
and
 
+
:<math>\theta(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math>
+
* The modified series
 
+
:<math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math>
<math>\theta(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math>
 
 
 
 
 
 
The modified series
 
 
 
 
 
 
: <math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math>
 
 
 
 
 
 
 
where
 
where
 
+
:<math>R(z;\tau) = \sum_{\nu\in Z+1/2}(-1)^{\nu-1/2}({\rm sign}(\nu)-E((\nu+\Im(z)/y)\sqrt{2y}))e^{-2\pi i \nu z}q^{-\nu^2/2}</math>
+
and $y=\Im(\tau)$ and
 
+
:<math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math>
: <math>R(z;\tau) = \sum_{\nu\in Z+1/2}(-1)^{\nu-1/2}({\rm sign}(\nu)-E((\nu+\Im(z)/y)\sqrt{2y}))e^{-2\pi i \nu z}q^{-\nu^2/2}</math>
 
 
 
 
 
 
and <em style="">y</em> = Im(τ) and
 
 
 
 
 
 
: <math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math>
 
 
 
 
 
 
 
satisfies the following transformation properties
 
satisfies the following transformation properties
 +
:<math>\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),</math>
 +
:<math>e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).</math>
 +
* In other words the modified Appell–Lerch series transforms like a modular form with respect to τ.
 +
* Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.
  
 
 
: <math>\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),</math>
 
 
 
 
: <math>e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).</math>
 
 
 
 
In other words the modified Appell–Lerch series transforms like a modular form with respect to τ. Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.
 
 
 
  
 
  
 
==higher level Appell function==
 
==higher level Appell function==
90번째 줄: 46번째 줄:
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
+
 
  
 
   
 
   
99번째 줄: 55번째 줄:
 
* [[indefinite theta functions]]
 
* [[indefinite theta functions]]
  
 
  
 
  
 
==encyclopedia==
 
==encyclopedia==
 
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Appell
 
* http://en.wikipedia.org/wiki/Appell
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
 
  
 
   
 
   
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
   
 
   
  

2013년 7월 25일 (목) 07:20 판

introduction

  • one way to construct mock theta functions
  • characters of representations in (nonrational) conformal field theory models based on Lie superalgebras\
  • 3rd order mock theta functions



Appell-Lerch sum

  • Appell–Lerch sums were first studied by Paul Émile Appell (1884) and Mathias Lerch (1892).
  • Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums
  • Zwegers used them to show that mock theta functions are essentially mock modular forms.
  • The Appell–Lerch series is

\[\mu(u,v;\tau) = \frac{a^{1/2}}{\theta(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}\] where \[\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}\] and \[\theta(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}\]

  • The modified series

\[\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2\] where \[R(z;\tau) = \sum_{\nu\in Z+1/2}(-1)^{\nu-1/2}({\rm sign}(\nu)-E((\nu+\Im(z)/y)\sqrt{2y}))e^{-2\pi i \nu z}q^{-\nu^2/2}\] and $y=\Im(\tau)$ and \[E(z) = 2\int_0^ze^{-\pi u^2}\,du\] satisfies the following transformation properties \[\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),\] \[e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).\]

  • In other words the modified Appell–Lerch series transforms like a modular form with respect to τ.
  • Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.


higher level Appell function

  • higher-level Appell functions
    • a particular instance of indefinite theta series



history



related items


encyclopedia



articles