"Appell-Lerch sums"의 두 판 사이의 차이
imported>Pythagoras0 |
imported>Pythagoras0 |
||
10번째 줄: | 10번째 줄: | ||
==Appell-Lerch sum== | ==Appell-Lerch sum== | ||
− | + | * Appell–Lerch sums were first studied by [http://en.wikipedia.org/wiki/Paul_%C3%89mile_Appell Paul Émile Appell] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFAppell1884 1884]) and [http://en.wikipedia.org/wiki/Mathias_Lerch Mathias Lerch] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFLerch1892 1892]). | |
− | Appell–Lerch sums were first studied by [http://en.wikipedia.org/wiki/Paul_%C3%89mile_Appell Paul Émile Appell] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFAppell1884 1884]) and [http://en.wikipedia.org/wiki/Mathias_Lerch Mathias Lerch] ([http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFLerch1892 1892]). Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums | + | * Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums |
− | + | * Zwegers used them to show that mock theta functions are essentially mock modular forms. | |
− | + | * The Appell–Lerch series is | |
− | + | :<math>\mu(u,v;\tau) = \frac{a^{1/2}}{\theta(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}</math> | |
− | The Appell–Lerch series is | ||
− | |||
− | <math>\mu(u,v;\tau) = \frac{a^{1/2}}{\theta(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}</math> | ||
− | |||
− | |||
− | |||
where | where | ||
− | + | :<math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math> | |
− | <math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math> | ||
− | |||
− | |||
− | |||
and | and | ||
− | + | :<math>\theta(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math> | |
− | + | * The modified series | |
− | + | :<math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math> | |
− | <math>\theta(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math> | ||
− | |||
− | |||
− | |||
− | The modified series | ||
− | |||
− | |||
− | |||
− | : <math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math> | ||
− | |||
− | |||
− | |||
where | where | ||
− | + | :<math>R(z;\tau) = \sum_{\nu\in Z+1/2}(-1)^{\nu-1/2}({\rm sign}(\nu)-E((\nu+\Im(z)/y)\sqrt{2y}))e^{-2\pi i \nu z}q^{-\nu^2/2}</math> | |
− | + | and $y=\Im(\tau)$ and | |
− | + | :<math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math> | |
− | : <math>R(z;\tau) = \sum_{\nu\in Z+1/2}(-1)^{\nu-1/2}({\rm sign}(\nu)-E((\nu+\Im(z)/y)\sqrt{2y}))e^{-2\pi i \nu z}q^{-\nu^2/2}</math> | ||
− | |||
− | |||
− | |||
− | and | ||
− | |||
− | |||
− | |||
− | : <math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math> | ||
− | |||
− | |||
− | |||
satisfies the following transformation properties | satisfies the following transformation properties | ||
+ | :<math>\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),</math> | ||
+ | :<math>e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).</math> | ||
+ | * In other words the modified Appell–Lerch series transforms like a modular form with respect to τ. | ||
+ | * Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==higher level Appell function== | ==higher level Appell function== | ||
90번째 줄: | 46번째 줄: | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | + | ||
99번째 줄: | 55번째 줄: | ||
* [[indefinite theta functions]] | * [[indefinite theta functions]] | ||
− | |||
− | |||
==encyclopedia== | ==encyclopedia== | ||
− | |||
− | |||
* http://en.wikipedia.org/wiki/Appell | * http://en.wikipedia.org/wiki/Appell | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
2013년 7월 25일 (목) 06:20 판
introduction
- one way to construct mock theta functions
- characters of representations in (nonrational) conformal field theory models based on Lie superalgebras\
- 3rd order mock theta functions
Appell-Lerch sum
- Appell–Lerch sums were first studied by Paul Émile Appell (1884) and Mathias Lerch (1892).
- Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums
- Zwegers used them to show that mock theta functions are essentially mock modular forms.
- The Appell–Lerch series is
\[\mu(u,v;\tau) = \frac{a^{1/2}}{\theta(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}\] where \[\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}\] and \[\theta(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}\]
- The modified series
\[\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2\] where \[R(z;\tau) = \sum_{\nu\in Z+1/2}(-1)^{\nu-1/2}({\rm sign}(\nu)-E((\nu+\Im(z)/y)\sqrt{2y}))e^{-2\pi i \nu z}q^{-\nu^2/2}\] and $y=\Im(\tau)$ and \[E(z) = 2\int_0^ze^{-\pi u^2}\,du\] satisfies the following transformation properties \[\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),\] \[e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).\]
- In other words the modified Appell–Lerch series transforms like a modular form with respect to τ.
- Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.
higher level Appell function
- higher-level Appell functions
- a particular instance of indefinite theta series
history
encyclopedia
articles
- Tohru Eguchi and Kazuhiro Hikami Superconformal Algebras and Mock Theta Functions, 2009
- Some characters of Kac and Wakimoto and nonholomorphic modular functions.
- K. Bringmann and K. Ono, Math. Annalen 345, pages 547-558 (2009)
- Appell-Lerch sums as mock modular forms
- Zwegers, 2008
- Higher String Functions, Higher-Level Appell Functions, and the Logarithmic sℓ︿2k/u(1) CFT Model
- A. M. Semikhatov
- Higher-Level Appell Functions, Modular Transformations, and Characters
- A.M. Semikhatov
- Mock Theta Functions
- Sander Zwegers, 2002
- Integrable highest weight modules over affine superalgebras and Appell’s function
- Kac V.G., Wakimoto M, Commun. Math. Phys. 215(3), 631–682 (2001)
- N = 2 superconformal minimal models
- Yutaka Matsuo Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797
- C. Truesdell On a Function Which Occurs in the Theory of the Structure of Polymers, The Annals of Mathematics, Second Series, Vol. 46, No. 1 (Jan., 1945), pp. 144-157