"Non-unitary c(2,k+2) minimal models"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (Pythagoras0 사용자가 Non-unitary c(2,k+2) minimal models 문서를 Non-unitary c(2,k+2) minimal models 문서로 옮겼습니다.)
imported>Pythagoras0
14번째 줄: 14번째 줄:
 
*  primary fields have conformal dimensions<br><math>h_j=-\frac{j(k-j)}{2(k+2)}</math>, <math>j\in \{0,1,\cdots,[k/2]\}</math><br>
 
*  primary fields have conformal dimensions<br><math>h_j=-\frac{j(k-j)}{2(k+2)}</math>, <math>j\in \{0,1,\cdots,[k/2]\}</math><br>
 
*  effective central charge<br><math>c_{eff}=\frac{k-1}{k+2}</math><br>
 
*  effective central charge<br><math>c_{eff}=\frac{k-1}{k+2}</math><br>
*  dilogarithm identity<br><math>\sum_{i=1}^{[k/2]}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}}})=\frac{k-1}{k+2}\cdot \frac{\pi^2}{6}</math><br>
+
*  dilogarithm identity<br><math>\sum_{i=1}^{[k/2]}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}})=\frac{k-1}{k+2}\cdot \frac{\pi^2}{6}</math><br>
 
*  character functions<br><math>\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}</math><br>
 
*  character functions<br><math>\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}</math><br>
 
*  to understand the factor <math>q^{h-c/24}</math>, look at the [[finite size effect]] page also<br>
 
*  to understand the factor <math>q^{h-c/24}</math>, look at the [[finite size effect]] page also<br>
*  quantum dimension and there recurrence relation<br><math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}}</math> satisfies<br><math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math><br>
+
*  quantum dimension and there recurrence relation<br><math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}</math> satisfies<br><math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math><br>
  
 
 
 
 

2012년 9월 15일 (토) 13:58 판

introduction
  • important

 

 

 

non-unitary \(c(2,k+2)\)'minimal models'
  • central charge
    \(c(2,k+2)=1-\frac{3k^2}{k+2}\)
    \(k \geq 3\), odd
  • primary fields have conformal dimensions
    \(h_j=-\frac{j(k-j)}{2(k+2)}\), \(j\in \{0,1,\cdots,[k/2]\}\)
  • effective central charge
    \(c_{eff}=\frac{k-1}{k+2}\)
  • dilogarithm identity
    \(\sum_{i=1}^{[k/2]}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}})=\frac{k-1}{k+2}\cdot \frac{\pi^2}{6}\)
  • character functions
    \(\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}\)
  • to understand the factor \(q^{h-c/24}\), look at the finite size effect page also
  • quantum dimension and there recurrence relation
    \(d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\) satisfies
    \(d_i^2=1+d_{i-1}d_{i+1}\) where \(d_0=1\), \(d_k=1\)

 

  1. (*choose k for c (2,k+2) minimal model*)k := 11
    (*define Rogers dilogarithm*)
    L[x_] := PolyLog[2, x] + 1/2 Log[x] Log[1 - x]
    (*quantum dimension for minimal models*)
    f[k_, i_] := (Sin[Pi/(k + 2)]/Sin[(i + 1) Pi/(k + 2)])^2
    (*effective central charge*)
    g[k_] := (k*Pi^2)/(2 (k + 2))
    (*compare the results*)
    N[Sum[L[f[k, i]], {i, 1, k - 1}] + Pi^2/6, 10]
    N[g[k], 10]
    d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]
    Table[{i, d[k, i]}, {i, 1, k}] // TableForm
    Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,
       k}] // TableForm

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links