"Bruhat decomposition"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
double Bruhat cells
 
double Bruhat cells
13번째 줄: 13번째 줄:
 
 
 
 
  
==Bruhat cell</h5>
+
==Bruhat cell==
  
 
G=GL_{n}
 
G=GL_{n}
29번째 줄: 29번째 줄:
 
 
 
 
  
==double Bruhat cell (DBC)</h5>
+
==double Bruhat cell (DBC)==
  
 
* <math>G^{u,v} =BuB\cap B_{-}vB_{-}</math>
 
* <math>G^{u,v} =BuB\cap B_{-}vB_{-}</math>
38번째 줄: 38번째 줄:
 
 
 
 
  
==realization of finite type cluster algebra</h5>
+
==realization of finite type cluster algebra==
  
 
* Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.
 
* Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.
70번째 줄: 70번째 줄:
 
 
 
 
  
==example</h5>
+
==example==
  
 
* [[double Bruhat cell example]]
 
* [[double Bruhat cell example]]
84번째 줄: 84번째 줄:
 
 
 
 
  
==history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
92번째 줄: 92번째 줄:
 
 
 
 
  
==related items</h5>
+
==related items==
  
 
* http://qchu.wordpress.com/2010/07/11/chevalley-bruhat-order/
 
* http://qchu.wordpress.com/2010/07/11/chevalley-bruhat-order/
100번째 줄: 100번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
  
 
* http://en.wikipedia.org/wiki/Longest_element_of_a_Coxeter_group
 
* http://en.wikipedia.org/wiki/Longest_element_of_a_Coxeter_group
113번째 줄: 113번째 줄:
 
 
 
 
  
==books</h5>
+
==books==
  
 
 
 
 
125번째 줄: 125번째 줄:
 
 
 
 
  
==expositions</h5>
+
==expositions==
  
 
* [http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf ][http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf http://www-math.mit.edu/~gyuri/papers/bru1.pdf]
 
* [http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf ][http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf http://www-math.mit.edu/~gyuri/papers/bru1.pdf]
137번째 줄: 137번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
  
 
*  Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.<br>
 
*  Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.<br>
152번째 줄: 152번째 줄:
 
 
 
 
  
==question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk
 
* http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk
163번째 줄: 163번째 줄:
 
 
 
 
  
==blogs</h5>
+
==blogs==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
174번째 줄: 174번째 줄:
 
 
 
 
  
==experts on the field</h5>
+
==experts on the field==
  
 
* http://arxiv.org/
 
* http://arxiv.org/
182번째 줄: 182번째 줄:
 
 
 
 
  
==links</h5>
+
==links==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 14:23 판

introduction

double Bruhat cells

Bruhat order

Weyl group action 

The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.

 

 

Bruhat cell

G=GL_{n}

B : upper triangular matrices \in G

B_{_} : lower triangular matrices in G

W=S_{n} we can think of it as a subgroup of G

Double cosets \(BwB\) and \(B_{-}wB_{-}\) are called Bruhat cells.

 

 

double Bruhat cell (DBC)

  • \(G^{u,v} =BuB\cap B_{-}vB_{-}\)
  • \(G=\cup_{u,v\in W\times W} G^{u,v}\) (disjoint union)

 

 

realization of finite type cluster algebra

  • Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.

 

 

\(\mathbb{C}[L^{c,c^{-1}}]\) is a cluster algebra of finite type. It has the same type as Cartan matrix.

 

type A_{n}

(i) inite seed is given by x=(x_{[1,1]},\cdots,x_{[1,n]}), y=(y_1,\cdots,y_n), B=B(C)

(ii) The set of cluster variables is \{x_{[i,j]}|1\leq i\leq j\leq n \}

(iii) The exchange relations

x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]} for 1\leq i\leq j-1\leq k\leq l-1\leq n

 

 

  • remark

x_{[i,j]} corresponds to the diagonal between i and j in the triangulation of regular (n+3)-gon

 

example

 

 

 

 

 

history

 

 

related items

 

 

encyclopedia==    

books

 

 

 

expositions

 

 

articles==    

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links