"Bruhat decomposition"의 두 판 사이의 차이
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | ==introduction | + | ==introduction== |
double Bruhat cells | double Bruhat cells | ||
13번째 줄: | 13번째 줄: | ||
− | ==Bruhat cell | + | ==Bruhat cell== |
G=GL_{n} | G=GL_{n} | ||
29번째 줄: | 29번째 줄: | ||
− | ==double Bruhat cell (DBC) | + | ==double Bruhat cell (DBC)== |
* <math>G^{u,v} =BuB\cap B_{-}vB_{-}</math> | * <math>G^{u,v} =BuB\cap B_{-}vB_{-}</math> | ||
38번째 줄: | 38번째 줄: | ||
− | ==realization of finite type cluster algebra | + | ==realization of finite type cluster algebra== |
* Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303. | * Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303. | ||
70번째 줄: | 70번째 줄: | ||
− | ==example | + | ==example== |
* [[double Bruhat cell example]] | * [[double Bruhat cell example]] | ||
84번째 줄: | 84번째 줄: | ||
− | ==history | + | ==history== |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
92번째 줄: | 92번째 줄: | ||
− | ==related items | + | ==related items== |
* http://qchu.wordpress.com/2010/07/11/chevalley-bruhat-order/ | * http://qchu.wordpress.com/2010/07/11/chevalley-bruhat-order/ | ||
100번째 줄: | 100번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia== |
* http://en.wikipedia.org/wiki/Longest_element_of_a_Coxeter_group | * http://en.wikipedia.org/wiki/Longest_element_of_a_Coxeter_group | ||
113번째 줄: | 113번째 줄: | ||
− | ==books | + | ==books== |
125번째 줄: | 125번째 줄: | ||
− | ==expositions | + | ==expositions== |
* [http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf ][http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf http://www-math.mit.edu/~gyuri/papers/bru1.pdf] | * [http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf ][http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf http://www-math.mit.edu/~gyuri/papers/bru1.pdf] | ||
137번째 줄: | 137번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles== |
* Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.<br> | * Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.<br> | ||
152번째 줄: | 152번째 줄: | ||
− | ==question and answers(Math Overflow) | + | ==question and answers(Math Overflow)== |
* http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk | * http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk | ||
163번째 줄: | 163번째 줄: | ||
− | ==blogs | + | ==blogs== |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
174번째 줄: | 174번째 줄: | ||
− | ==experts on the field | + | ==experts on the field== |
* http://arxiv.org/ | * http://arxiv.org/ | ||
182번째 줄: | 182번째 줄: | ||
− | ==links | + | ==links== |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] |
2012년 10월 28일 (일) 14:23 판
introduction
double Bruhat cells
Bruhat order
Weyl group action
The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.
Bruhat cell
G=GL_{n}
B : upper triangular matrices \in G
B_{_} : lower triangular matrices in G
W=S_{n} we can think of it as a subgroup of G
Double cosets \(BwB\) and \(B_{-}wB_{-}\) are called Bruhat cells.
double Bruhat cell (DBC)
- \(G^{u,v} =BuB\cap B_{-}vB_{-}\)
- \(G=\cup_{u,v\in W\times W} G^{u,v}\) (disjoint union)
realization of finite type cluster algebra
- Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.
\(\mathbb{C}[L^{c,c^{-1}}]\) is a cluster algebra of finite type. It has the same type as Cartan matrix.
type A_{n}
(i) inite seed is given by x=(x_{[1,1]},\cdots,x_{[1,n]}), y=(y_1,\cdots,y_n), B=B(C)
(ii) The set of cluster variables is \{x_{[i,j]}|1\leq i\leq j\leq n \}
(iii) The exchange relations
x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]} for 1\leq i\leq j-1\leq k\leq l-1\leq n
- remark
x_{[i,j]} corresponds to the diagonal between i and j in the triangulation of regular (n+3)-gon
example
history
encyclopedia==
- http://en.wikipedia.org/wiki/Longest_element_of_a_Coxeter_group
- http://eom.springer.de/b/b017690.htm
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/[1]
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
- [2]http://www-math.mit.edu/~gyuri/papers/bru1.pdf
- Double Bruhat Cells http://pages.uoregon.edu/dmoseley/talks/Lecture14.pdf
- Cluster Structures on Double Bruhat Cells http://pages.uoregon.edu/dmoseley/talks/Lecture15.pdf
- http://math.ucr.edu/home/baez/week186.html
- http://www.math.harvard.edu/~ryanr/bruhat_row-reduction.pdf
articles==
- Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk
- http://mathoverflow.net/questions/28569/is-there-a-morse-theory-proof-of-the-bruhat-decomposition
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field
links
- Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk
- http://mathoverflow.net/questions/28569/is-there-a-morse-theory-proof-of-the-bruhat-decomposition
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field