"Torus knots"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로) |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “4909919” 문자열을 “” 문자열로) |
||
44번째 줄: | 44번째 줄: | ||
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
− | + | ||
2012년 11월 2일 (금) 04:56 판
introduction
- torus knot \[K_{p,q}\]
- The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold
- Seifert fibered space
- S^1-bundle over an orbifold
history
encyclopedia
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
- Proof of the volume conjecture for torus knots
- R. M. Kashaev and O. Tirkkonen, 2003
- Torus knot and minimal model
- Kazuhiro Hikami, a and Anatol N. Kirillov, 2003
- Kazuhiro Hikami, a and Anatol N. Kirillov, 2003
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field