"Periods and transcendental number theory"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 이름을 Periods and transcendental number theory로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction</h5> |
9번째 줄: | 9번째 줄: | ||
This [http://arxiv.org/abs/0805.2568 paper] – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a <em style="line-height: 2em;">théorie de l’ambiguïté</em>. Good to see Albert [http://golem.ph.utexas.edu/category/2008/04/returning_to_lautman.html Lautman] receiving a mention. | This [http://arxiv.org/abs/0805.2568 paper] – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a <em style="line-height: 2em;">théorie de l’ambiguïté</em>. Good to see Albert [http://golem.ph.utexas.edu/category/2008/04/returning_to_lautman.html Lautman] receiving a mention. | ||
− | For those who want something less introductory, on the same day André has deposited [http://arxiv.org/abs/0805.2569 Galois theory, motives and transcendental numbers]. Lots there about Kontsevich and Zagier’s[http://en.wikipedia.org/wiki/Period_ | + | For those who want something less introductory, on the same day André has deposited [http://arxiv.org/abs/0805.2569 Galois theory, motives and transcendental numbers]. Lots there about Kontsevich and Zagier’s[http://en.wikipedia.org/wiki/Period_%28number%29 Periods], described in their article of that name in <em style="line-height: 2em;">Mathematics Unlimited – 2001 and beyond</em>, pages 771-808, unfortunately now no longer available on the Web. |
− | <h5 style="line-height: | + | |
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">regulator</h5> | ||
+ | |||
+ | * regulator = R^n 을 격자로 자른 compact 공간의 부피로 정의<br> | ||
+ | |||
+ | Abel-Jacobi map은 | ||
+ | |||
+ | -Chern character map | ||
+ | |||
+ | -대수적 정수론의 Dirichlet regulator | ||
+ | |||
+ | -arithmetic geometry의 Beilinson regulator / Borel regulator | ||
+ | |||
+ | -motivic cohomology의 Hodge realization / de Rham realization | ||
+ | |||
+ | -chow group 의 cycle class map (singular homology의 fundamental class를 sub manifold 버전으로 보는 것) | ||
+ | |||
+ | -Poincare dual | ||
+ | |||
+ | 등으로도 일반화 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5> | ||
19번째 줄: | 45번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5> |
* [[2009년 books and articles|찾아볼 수학책]] | * [[2009년 books and articles|찾아볼 수학책]] | ||
32번째 줄: | 58번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> |
− | * http://en.wikipedia.org/wiki/Period_(number) | + | * [http://en.wikipedia.org/wiki/Period_%28number%29 http://en.wikipedia.org/wiki/Period_(number)] |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/regulator | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
− | + | * Princeton companion to mathematics(첨부파일로 올릴것) | |
− | * Princeton companion to mathematics(첨부파일로 올릴것) | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs</h5> |
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | ||
50번째 줄: | 76번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> |
* [http://www.springerlink.com/content/w65r06p4n2311064/ Algebraic values of Schwarz Triangle Functions]<br> | * [http://www.springerlink.com/content/w65r06p4n2311064/ Algebraic values of Schwarz Triangle Functions]<br> | ||
** Hironori Shiga and Jürgen Wolfart, 2007 | ** Hironori Shiga and Jürgen Wolfart, 2007 | ||
− | * [http://people.math.jussieu.fr/ | + | * [http://people.math.jussieu.fr/%7Emiw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.]<br> |
** M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.<br> | ** M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.<br> | ||
* Periods<br> | * Periods<br> | ||
65번째 줄: | 91번째 줄: | ||
* http://www.zentralblatt-math.org/zmath/en/ | * http://www.zentralblatt-math.org/zmath/en/ | ||
* http://pythagoras0.springnote.com/ | * http://pythagoras0.springnote.com/ | ||
− | * http://math.berkeley.edu/~reb/papers/index.html | + | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] |
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | * http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | ||
72번째 줄: | 98번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">TeX </h5> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2009년 10월 4일 (일) 03:21 판
introduction
http://golem.ph.utexas.edu/category/2008/05/ambiguity_theory.html
This paper – Ambiguity theory, old and new – is rather fun and would be good to understand thoroughly if we hope to get 2-Galois to do anything important. It’s by Yves André of the ENS, and refers to a comment made by Galois that he was working with a théorie de l’ambiguïté. Good to see Albert Lautman receiving a mention.
For those who want something less introductory, on the same day André has deposited Galois theory, motives and transcendental numbers. Lots there about Kontsevich and Zagier’sPeriods, described in their article of that name in Mathematics Unlimited – 2001 and beyond, pages 771-808, unfortunately now no longer available on the Web.
regulator
- regulator = R^n 을 격자로 자른 compact 공간의 부피로 정의
Abel-Jacobi map은
-Chern character map
-대수적 정수론의 Dirichlet regulator
-arithmetic geometry의 Beilinson regulator / Borel regulator
-motivic cohomology의 Hodge realization / de Rham realization
-chow group 의 cycle class map (singular homology의 fundamental class를 sub manifold 버전으로 보는 것)
-Poincare dual
등으로도 일반화
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://en.wikipedia.org/wiki/Period_(number)
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/regulator
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(첨부파일로 올릴것)
blogs
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
articles
- Algebraic values of Schwarz Triangle Functions
- Hironori Shiga and Jürgen Wolfart, 2007
- Transcendence of periods: the state of the art.
- M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.
- M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.
- Periods
- Zagier-Kontsevich, 2001
- periods.ps
- Zagier-Kontsevich, 2001
- Algebraic Groups, Hodge Theory, and Transcendence
- G. Wüstholz, , pp. 476–483 in Proc. of the ICM Berkeley 1986 (ed.: A.M. Gleason), AMS, 1987.
- G. Wüstholz, , pp. 476–483 in Proc. of the ICM Berkeley 1986 (ed.: A.M. Gleason), AMS, 1987.
- Algebraicity of some products of values of the gamma function, Appendix to: P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Proceedings of Symposia in Pure Mathematics, Vol. 33 Part 2, 1979, 313-346.
- 논문정리
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=