"거듭제곱의 합을 구하는 공식"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소== |
* [[거듭제곱의 합을 구하는 공식]] | * [[거듭제곱의 합을 구하는 공식]] | ||
7번째 줄: | 7번째 줄: | ||
− | ==개요 | + | ==개요== |
* 1부터 n까지의 k-거듭제곱의 합을 구하는 공식. | * 1부터 n까지의 k-거듭제곱의 합을 구하는 공식. | ||
16번째 줄: | 16번째 줄: | ||
− | ==간단한 예 | + | ==간단한 예== |
<math>1 + 2 + 3 + \cdots + n = {n(n+1) \over 2} = {n^2 + n \over 2}</math> | <math>1 + 2 + 3 + \cdots + n = {n(n+1) \over 2} = {n^2 + n \over 2}</math> | ||
34번째 줄: | 34번째 줄: | ||
− | ==베르누이 수 | + | ==베르누이 수== |
* [[베르누이 수]]의 생성함수는 다음과 같이 주어진다.<br><math>\frac{t}{e^t-1}= \sum_{n=0}^\infty B_n\frac{t^n}{n!}</math><br> | * [[베르누이 수]]의 생성함수는 다음과 같이 주어진다.<br><math>\frac{t}{e^t-1}= \sum_{n=0}^\infty B_n\frac{t^n}{n!}</math><br> | ||
43번째 줄: | 43번째 줄: | ||
− | ==베르누이 다항식 | + | ==베르누이 다항식== |
베르누이 다항식의 생성함수는 다음과 같이 정의된다. | 베르누이 다항식의 생성함수는 다음과 같이 정의된다. | ||
81번째 줄: | 81번째 줄: | ||
− | ==계차수열 | + | ==계차수열== |
<math>\Delta B_n(x)=nx^{n-1}</math> | <math>\Delta B_n(x)=nx^{n-1}</math> | ||
89번째 줄: | 89번째 줄: | ||
− | ==거듭제곱의 합 | + | ==거듭제곱의 합== |
[[차분방정식(difference equation) 과 유한미적분학 (finite calculus)|Calculus of Finite differences]] 의 정리에 의하면, <math>\Delta F=f</math> 인 두 수열에 대하여 | [[차분방정식(difference equation) 과 유한미적분학 (finite calculus)|Calculus of Finite differences]] 의 정리에 의하면, <math>\Delta F=f</math> 인 두 수열에 대하여 | ||
111번째 줄: | 111번째 줄: | ||
− | ==관련된 학부 과목과 미리 알고 있으면 좋은 것들 | + | ==관련된 학부 과목과 미리 알고 있으면 좋은 것들== |
117번째 줄: | 117번째 줄: | ||
− | ==관련된 대학원 과목 | + | ==관련된 대학원 과목== |
123번째 줄: | 123번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
* [[차분방정식(difference equation) 과 유한미적분학 (finite calculus)|Calculus of Finite differences]] | * [[차분방정식(difference equation) 과 유한미적분학 (finite calculus)|Calculus of Finite differences]] | ||
135번째 줄: | 135번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
141번째 줄: | 141번째 줄: | ||
− | ==위키링크 | + | ==위키링크== |
* http://en.wikipedia.org/wiki/Faulhaber%27s_formula | * http://en.wikipedia.org/wiki/Faulhaber%27s_formula | ||
149번째 줄: | 149번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* [http://www.jstor.org/stable/2686229 Using the Finite Difference Calculus to Sum Powers of Integers]<br> | * [http://www.jstor.org/stable/2686229 Using the Finite Difference Calculus to Sum Powers of Integers]<br> |
2012년 11월 1일 (목) 10:34 판
이 항목의 수학노트 원문주소==
개요
- 1부터 n까지의 k-거듭제곱의 합을 구하는 공식.
- 베르누이 수를 사용하여 표현가능함
간단한 예
\(1 + 2 + 3 + \cdots + n = {n(n+1) \over 2} = {n^2 + n \over 2}\)
\(1^2 + 2^2 + 3^2 + \cdots + n^2 = {n(n+1)(2n+1) \over 6} = {2n^3 + 3n^2 + n \over 6}\)
\(1^3 + 2^3 + 3^3 + \cdots + n^3 = \left({n^2 + n \over 2}\right)^2 = {n^4 + 2n^3 + n^2 \over 4}\)
\(1^4 + 2^4 + 3^4 + \cdots + n^4 = {6n^5 + 15n^4 + 10n^3 - n \over 30}\)
\(1^5 + 2^5 + 3^5 + \cdots + n^5 = {2n^6 + 6n^5 + 5n^4 - n^2 \over 12}\)
\(1^6 + 2^6 + 3^6 + \cdots + n^6 = {6n^7 + 21n^6 + 21n^5 -7n^3 + n \over 42}\)
베르누이 수
- 베르누이 수의 생성함수는 다음과 같이 주어진다.
\(\frac{t}{e^t-1}= \sum_{n=0}^\infty B_n\frac{t^n}{n!}\)
- 처음 몇 베르누이 수는 다음과 같다.
\(B_0=1\), \(B_1=-{1 \over 2}\), \(B_2={1\over 6}\), \(B_3=0\), \(B_4=-\frac{1}{30}\), \(B_5=0\), \(B_6=\frac{1}{42}\), \(B_8=-\frac{1}{30}\), \(B_{10}=\frac{5}{66}\), \(B_{12}=-\frac{691}{2730}\),\(B_{14}=\frac{7}{6}\)
베르누이 다항식
베르누이 다항식의 생성함수는 다음과 같이 정의된다.
\(\frac{t e^{xt}}{e^t-1}= \sum_{n=0}^\infty B_n(x) \frac{t^n}{n!}\)
좀더 자세히 쓰면
\(B_n(x)=\sum_{k=0}^n {n \choose k}B_k x^{n-k}\)
여기서 \(B_k\) 는 베르누이 수
처음 몇 베르누이 다항식은 다음과 같다.
\(B_0(x)=1\)
\(B_1(x)=x-1/2\)
\(B_2(x)=x^2-x+1/6\)
\(B_3(x)=x^3-\frac{3}{2}x^2+\frac{1}{2}x\\)
\(B_4(x)=x^4-2x^3+x^2-\frac{1}{30}\)
\(B_5(x)=x^5-\frac{5}{2}x^4+\frac{5}{3}x^3-\frac{1}{6}x\)
\(B_6(x)=x^6-3x^5+\frac{5}{2}x^4-\frac{1}{2}x^2+\frac{1}{42}\)
계차수열
\(\Delta B_n(x)=nx^{n-1}\)
거듭제곱의 합
Calculus of Finite differences 의 정리에 의하면, \(\Delta F=f\) 인 두 수열에 대하여
\(\sum_a^{b-1}f(n)=F(b)-F(a)\)
이 성립한다.
이를 베르누이 다항식에 적용하면,
\(\sum_0^{n-1}k^r=\frac{1}{r+1}(B_{r+1}(n)-B_{r+1}(0))\)
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 대학원 과목
관련된 항목들
- Calculus of Finite differences
- 오일러-맥클로린 공식
- 베르누이 수와 베르누이 다항식
- 오일러와 바젤문제(완전제곱수의 역수들의 합)
- Umbral calculus
관련도서
위키링크
관련논문
- Using the Finite Difference Calculus to Sum Powers of Integers
- Lee Zia
- The College Mathematics Journal, Vol. 22, No. 4 (Sep., 1991), pp. 294-300
- Euler's formula nth Differences of Powers
- H. W. Gould
- The American Mathematical Monthly, Vol. 85, No. 6 (Jun. - Jul., 1978), pp. 450-467
- Bernoulli's Identity without Calculus
- Kenneth S. Williams
- Mathematics Magazine, Vol. 70, No. 1 (Feb., 1997), pp. 47-50
- The Umbral Method: A Survey of Elementary Mnemonic and Manipulative Uses
- Andrew P. Guinand
- The American Mathematical Monthly, Vol. 86, No. 3 (Mar., 1979), pp. 187-195
- A Symmetry of Power Sum Polynomials and Bernoulli Numbers
- Hans J. H. Tuenter
- The American Mathematical Monthly, Vol. 108, No. 3 (Mar., 2001), pp. 258-261
\(\frac{t}{e^t-1}= \sum_{n=0}^\infty B_n\frac{t^n}{n!}\)
\(B_0=1\), \(B_1=-{1 \over 2}\), \(B_2={1\over 6}\), \(B_3=0\), \(B_4=-\frac{1}{30}\), \(B_5=0\), \(B_6=\frac{1}{42}\), \(B_8=-\frac{1}{30}\), \(B_{10}=\frac{5}{66}\), \(B_{12}=-\frac{691}{2730}\),\(B_{14}=\frac{7}{6}\)
- Lee Zia
- The College Mathematics Journal, Vol. 22, No. 4 (Sep., 1991), pp. 294-300
- H. W. Gould
- The American Mathematical Monthly, Vol. 85, No. 6 (Jun. - Jul., 1978), pp. 450-467
- Kenneth S. Williams
- Mathematics Magazine, Vol. 70, No. 1 (Feb., 1997), pp. 47-50
- Andrew P. Guinand
- The American Mathematical Monthly, Vol. 86, No. 3 (Mar., 1979), pp. 187-195
- Hans J. H. Tuenter
- The American Mathematical Monthly, Vol. 108, No. 3 (Mar., 2001), pp. 258-261