"An analogue of Rogers-Ramanujan continued fraction"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==general theory of hypergeometric series and continued fraction==
 
==general theory of hypergeometric series and continued fraction==
 
+
:<math>R(z)=\sum_{n=0}^{\infty}\frac{z^{an}q^{bn^2}}{(q)_n}</math>
<math>R(z)=\sum_{n=0}^{\infty}\frac{z^{an}q^{bn^2}}{(q)_n}</math>
+
:<math>R(z)=R(zq^{1/a})+z^{a}q^{b}R(zq^{2b/a})</math> i.e.
 
 
<math>R(z)=R(zq^{1/a})+z^{a}q^{b}R(zq^{2b/a})</math> i.e.
 
 
 
 
  
 
   
 
   
11번째 줄: 7번째 줄:
 
==examples==
 
==examples==
  
* [[asymptotic analysis of basic hypergeometric series|asymptotic analysis of basic hypergeometric series]]<br>
+
* [[asymptotic analysis of basic hypergeometric series|asymptotic analysis of basic hypergeometric series]]
 
+
:<math>\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})</math>
<math>\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})</math>
+
:<math>2\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n-1)/2}}{(q)_n}\sim \sqrt{2}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
 
+
:<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
<math>2\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n-1)/2}}{(q)_n}\sim \sqrt{2}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
 
 
 
<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
 
 
 
 
 
 
 
   
 
   
  
 
==Rogers-Ramanujan==
 
==Rogers-Ramanujan==
 +
* A=2 (2,5) minimal model
 +
:<math>\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)</math>
 +
:<math>\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)</math>
 +
* recusrion <math>R(z)=R(zq)+zqR(zq^2)</math>
 +
* if <math>z=q^{n}</math>, <math>R(q^n)=R(q^{n+1})+q^{n+1}R(q^{n+2})</math>
 +
:<math>\frac{R(q^{n+1})}{R(q^n)}=\cfrac{1}{1+q^{n+1}\cfrac{R(q^{n+2})}{R(q^{n+1})}}</math>
 +
:<math>\frac{H(q)}{G(q)}=\cfrac{R(q)}{R(1)} = \cfrac{1}{1+q\cfrac{R(q^2)}{R(q)}}=\cfrac{1}{1+\cfrac{q}{1+q^2\cfrac{R(q^3)}{R(q^2)}}}=\cdots</math>
 +
* By repeating this, we get a continued fraction
 +
:<math>\frac{H(q)}{G(q)} = \cfrac{1}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}</math>
  
A=2 (2,5) minimal model
 
 
<math>\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)</math>
 
 
<math>\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)</math>
 
 
 
 
<math>R(z)=R(zq)+zqR(zq^2)</math>
 
 
<math>z=q^{n}</math>
 
 
<math>R(q^n)=R(q^{n+1})+q^{n+1}R(q^{n+2})</math>
 
 
<math>\frac{R(q^{n+1})}{R(q^n)}=\cfrac{1}{1+q^{n+1}\cfrac{R(q^{n+2})}{R(q^{n+1})}}</math>
 
 
<math>\frac{H(q)}{G(q)}=\cfrac{R(q)}{R(1)} = \cfrac{1}{1+q\cfrac{R(q^2)}{R(q)}}=\cfrac{1}{1+\cfrac{q}{1+q^2\cfrac{R(q^3)}{R(q^2)}}}=\cdots</math>
 
 
By repeating this, we get a continued fraction
 
 
<math>\frac{H(q)}{G(q)} = \cfrac{1}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}</math>
 
  
 
  
 
==analogue==
 
==analogue==
 +
* A=1/2 (3,5) minimal model
 +
:<math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)</math>
 +
:<math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)</math>
  
A=1/2 (3,5) minimal model
 
 
<math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)</math>
 
 
<math>\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)</math>
 
 
 
 
 
  
 
==recurrence relation==
 
==recurrence relation==
 +
* {{수학노트|url=로저스-라마누잔_항등식}}
 +
* {{수학노트|url=로저스-라마누잔_연분수}}
 +
:<math>R(z)=\sum_{n\geq 0}\frac{z^nq^{n^2/4}}{(1-q)\cdots(1-q^n)}</math>
 +
:<math>H(q)=R(q^{1/2})=\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)</math>
 +
:<math>G(q)=R(1)=\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)</math>
  
* http://pythagoras0.springnote.com/pages/3004578<br>
 
 
<math>R(z)=\sum_{n\geq 0}\frac{z^nq^{n^2/4}}{(1-q)\cdots(1-q^n)}</math>
 
 
<math>H(q)=R(q^{1/2})=\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)</math>
 
 
<math>G(q)=R(1)=\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)</math>
 
 
 
  
 
(theorem)
 
(theorem)
 
+
Let <math>a=1,b=1/4</math>
<math>a=1,b=1/4</math>
+
:<math>R(z)=R(zq)+zq^{1/4}R(zq^{1/2})</math>
 
+
If <math>z=q^{n/4}</math>,
<math>R(z)=R(zq)+zq^{1/4}R(zq^{1/2})</math>
+
:<math>R(q^{\frac{n}{4}})=R(q^{\frac{n+4}{4}})+q^{\frac{n+1}{4}}R(q^{\frac{n+2}{4}})</math>
 
+
:<math>\frac{R(q^{\frac{n+2}{4}})}{R(q^{\frac{n}{4}})}=\cfrac{1}{q^{\frac{n+1}{4}}+\cfrac{R(q^{\frac{n+4}{4}})}{R(q^{\frac{n+2}{4}})}}</math>
<math>z=q^{n/4}</math>
 
 
 
<math>R(q^{\frac{n}{4}}})=R(q^{\frac{n+4}{4}})+q^{\frac{n+1}{4}}}R(q^{\frac{n+2}{4}}})</math>
 
 
 
<math>\frac{R(q^{\frac{n+2}{4}})}{R(q^{\frac{n}{4}})}=\cfrac{1}{q^{\frac{n+1}{4}}+\cfrac{R(q^{\frac{n+4}{4}})}{R(q^{\frac{n+2}{4}})}}</math>
 
  
 
   
 
   
  
 
(proof)
 
(proof)
 
+
:<math>R(z)=R(zq)+zqR(zq^2)</math>
<math>R(z)=R(zq)+zqR(zq^2)</math>
+
:<math>R(q^n)=R(q^{n+1})+q^{n+1}R(q^{n+2})</math>
 
 
<math>R(q^n)=R(q^{n+1})+q^{n+1}R(q^{n+2})</math>
 
  
 
 
99번째 줄: 59번째 줄:
 
(cor)
 
(cor)
  
<math>\frac{R(q^{\frac{n+2}{4}})}{R(q^{\frac{n}{4}})}=\cfrac{1}{q^{\frac{n+1}{4}}+\cfrac{R(q^{\frac{n+4}{4}})}{R(q^{\frac{n+2}{4}})}}</math>
+
:<math>\frac{R(q^{\frac{n+2}{4}})}{R(q^{\frac{n}{4}})}=\cfrac{1}{q^{\frac{n+1}{4}}+\cfrac{R(q^{\frac{n+4}{4}})}{R(q^{\frac{n+2}{4}})}}</math>
 
+
:<math>\frac{H(q)}{G(q)}=\cfrac{R(q^{1/2})}{R(1)} = \cfrac{1}{q^{1/4}+\cfrac{R(q)}{R(q^{1/2})}}=\cfrac{1}{q^{1/4}+\cfrac{1}{q^{3/4}+\cfrac{R(q^{3/2})}{R(q)}}}</math>
<math>\frac{H(q)}{G(q)}=\cfrac{R(q^{1/2})}{R(1)} = \cfrac{1}{q^{1/4}+\cfrac{R(q)}{R(q^{1/2})}}=\cfrac{1}{q^{1/4}+\cfrac{1}{q^{3/4}+\cfrac{R(q^{3/2})}{R(q)}}}</math>
+
:<math>\frac{1}{q^{1/4}+\frac{1}{q^{3/4}+\frac{1}{q^{5/4}+\frac{1}{\frac{1}{q^{9/4}}+\cdots}}}}</math>
 
 
 
 
 
 
 
 
<math>\frac{1}{q^{1/4}+\frac{1}{q^{3/4}+\frac{1}{q^{5/4}+\frac{1}{\frac{1}{q^{9/4}}+\cdots}}}}</math>
 
 
 
 
  
 
  
 
  
 
==modular function==
 
==modular function==
 +
:<math>q^{1/40}H(q)=q^{1/40}R(q^{1/2})=q^{1/40}\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n}</math>
 +
:<math>q^{-1/40}G(q)=q^{-1/40}R(1)=q^{-1/40}\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}</math>
  
<math>q^{1/40}H(q)=q^{1/40}R(q^{1/2})=q^{1/40}\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n}</math>
 
 
<math>q^{-1/40}G(q)=q^{-1/40}R(1)=q^{-1/40}\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}</math>
 
  
 
 
 
  
 
==modular function and continued fraction==
 
==modular function and continued fraction==
 +
:<math>q^{1/20}\frac{H(q)}{G(q)}=\cfrac{q^{1/20}}{q^{1/4}+\cfrac{1}{q^{3/4}+\cfrac{R(q^{3/2})}{R(q)}}}</math>
  
<math>q^{1/20}\frac{H(q)}{G(q)}=\cfrac{q^{1/20}}{q^{1/4}+\cfrac{1}{q^{3/4}+\cfrac{R(q^{3/2})}{R(q)}}}</math>
 
 
 
  
 
  
 
==related items==
 
==related items==
  
* [[rank 2 case]]<br>
+
* [[rank 2 case]]
* [[asymptotic analysis of basic hypergeometric series]]<br>
+
* [[asymptotic analysis of basic hypergeometric series]]
  
 
   
 
   
143번째 줄: 86번째 줄:
  
 
==computational resources==
 
==computational resources==
 
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxOHRUNER3RGJiMEk/edit
* [[5399075/attachments/4950801|an_analogue_of_Rogers-Ramanujan_continued_fraction.nb]]
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [[mathematica and experimental mathematics]]<br>
 
 
 
 
  
 
   
 
   
158번째 줄: 92번째 줄:
 
==references==
 
==references==
  
* [http://www.ams.org/bull/2005-42-02/S0273-0979-05-01047-5/home.html#References Continued fractions and modular functions]<br>
+
* [http://www.ams.org/bull/2005-42-02/S0273-0979-05-01047-5/home.html#References Continued fractions and modular functions]
 
** W. Duke, Bull. Amer. Math. Soc. 42 (2005), 137-162
 
** W. Duke, Bull. Amer. Math. Soc. 42 (2005), 137-162
* [http://dx.doi.org/10.1016/0377-0427%2895%2900263-4 http://dx.doi.org/10.1016/0377-0427(95)00263-4]
+
* [http://dx.doi.org/10.1006/aima.1994.1077 Diagonalization of Certain Integral Operators]
* [http://dx.doi.org/10.1006/aima.1994.1077 Diagonalization of Certain Integral Operators]<br>
+
** Ismail M. E. H. and Zhang R. Advances in Mathematics Volume 109, Issue 1, November 1994, Pages 1-33   
** Ismail M. E. H. and Zhang R. Advances in Mathematics Volume 109, Issue 1, November 1994, Pages 1-33<br> <br>
+
** [http://dx.doi.org/10.1016/0377-0427%2895%2900263-4 http://dx.doi.org/10.1016/0377-0427(95)00263-4]
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:thesis]]
 
[[분류:thesis]]
 
[[분류:q-series]]
 
[[분류:q-series]]

2013년 7월 14일 (일) 08:44 판

general theory of hypergeometric series and continued fraction

\[R(z)=\sum_{n=0}^{\infty}\frac{z^{an}q^{bn^2}}{(q)_n}\] \[R(z)=R(zq^{1/a})+z^{a}q^{b}R(zq^{2b/a})\] i.e.


examples

\[\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\] \[2\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n-1)/2}}{(q)_n}\sim \sqrt{2}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\] \[\prod_{n=1}^{\infty}(1+q^n)=\sum_{n\geq 0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\]


Rogers-Ramanujan

  • A=2 (2,5) minimal model

\[\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)\] \[\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)\]

  • recusrion \(R(z)=R(zq)+zqR(zq^2)\)
  • if \(z=q^{n}\), \(R(q^n)=R(q^{n+1})+q^{n+1}R(q^{n+2})\)

\[\frac{R(q^{n+1})}{R(q^n)}=\cfrac{1}{1+q^{n+1}\cfrac{R(q^{n+2})}{R(q^{n+1})}}\] \[\frac{H(q)}{G(q)}=\cfrac{R(q)}{R(1)} = \cfrac{1}{1+q\cfrac{R(q^2)}{R(q)}}=\cfrac{1}{1+\cfrac{q}{1+q^2\cfrac{R(q^3)}{R(q^2)}}}=\cdots\]

  • By repeating this, we get a continued fraction

\[\frac{H(q)}{G(q)} = \cfrac{1}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}\]


analogue

  • A=1/2 (3,5) minimal model

\[\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)\] \[\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)\]


recurrence relation

\[R(z)=\sum_{n\geq 0}\frac{z^nq^{n^2/4}}{(1-q)\cdots(1-q^n)}\] \[H(q)=R(q^{1/2})=\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n} \sim \frac{2}{\sqrt{5+\sqrt{5}}}\exp(\frac{\pi^2}{10t}+\frac{t}{40})+o(t^5)\] \[G(q)=R(1)=\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\sim \frac{2}{\sqrt{5-\sqrt{5}}}\exp(\frac{\pi^2}{10t}-\frac{t}{40})+o(t^5)\]


(theorem) Let \(a=1,b=1/4\) \[R(z)=R(zq)+zq^{1/4}R(zq^{1/2})\] If \(z=q^{n/4}\), \[R(q^{\frac{n}{4}})=R(q^{\frac{n+4}{4}})+q^{\frac{n+1}{4}}R(q^{\frac{n+2}{4}})\] \[\frac{R(q^{\frac{n+2}{4}})}{R(q^{\frac{n}{4}})}=\cfrac{1}{q^{\frac{n+1}{4}}+\cfrac{R(q^{\frac{n+4}{4}})}{R(q^{\frac{n+2}{4}})}}\]


(proof) \[R(z)=R(zq)+zqR(zq^2)\] \[R(q^n)=R(q^{n+1})+q^{n+1}R(q^{n+2})\]


(cor)

\[\frac{R(q^{\frac{n+2}{4}})}{R(q^{\frac{n}{4}})}=\cfrac{1}{q^{\frac{n+1}{4}}+\cfrac{R(q^{\frac{n+4}{4}})}{R(q^{\frac{n+2}{4}})}}\] \[\frac{H(q)}{G(q)}=\cfrac{R(q^{1/2})}{R(1)} = \cfrac{1}{q^{1/4}+\cfrac{R(q)}{R(q^{1/2})}}=\cfrac{1}{q^{1/4}+\cfrac{1}{q^{3/4}+\cfrac{R(q^{3/2})}{R(q)}}}\] \[\frac{1}{q^{1/4}+\frac{1}{q^{3/4}+\frac{1}{q^{5/4}+\frac{1}{\frac{1}{q^{9/4}}+\cdots}}}}\]


modular function

\[q^{1/40}H(q)=q^{1/40}R(q^{1/2})=q^{1/40}\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}+\frac{n}{2}}} {(q;q)_n}\] \[q^{-1/40}G(q)=q^{-1/40}R(1)=q^{-1/40}\sum_{n=0}^\infty \frac {q^{\frac{n^2}{4}}} {(q;q)_n}\]


modular function and continued fraction

\[q^{1/20}\frac{H(q)}{G(q)}=\cfrac{q^{1/20}}{q^{1/4}+\cfrac{1}{q^{3/4}+\cfrac{R(q^{3/2})}{R(q)}}}\]


related items



computational resources


references