"Monodromy matrix"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
| 9번째 줄: | 9번째 줄: | ||
\end{array} | \end{array} | ||
\right) | \right) | ||
| + | $$ | ||
| + | * YBE implies the following relation | ||
| + | $$ | ||
| + | RLL=LLR | ||
$$ | $$ | ||
| 32번째 줄: | 36번째 줄: | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
[[분류:integrable systems]] | [[분류:integrable systems]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
2013년 4월 10일 (수) 01:51 판
introduction
- monodromy matrix
$$ L= \left( \begin{array}{cc} A & B \\ C & D \end{array} \right) $$
- YBE implies the following relation
$$ RLL=LLR $$
- transfer matrix
$$ T=\operatorname{tr} L=A+D $$
history