"Monodromy matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
2번째 줄: 2번째 줄:
 
* monodromy matrix
 
* monodromy matrix
 
$$
 
$$
T=
+
T(\lambda)=
 
\left(
 
\left(
 
\begin{array}{cc}
 
\begin{array}{cc}
  A & B \\
+
  A(\lambda ) & B(\lambda ) \\
  C & D
+
  C(\lambda ) & D(\lambda )
 
\end{array}
 
\end{array}
 
\right)
 
\right)
15번째 줄: 15번째 줄:
 
RTT=TTR
 
RTT=TTR
 
$$
 
$$
 
 
* transfer matrix
 
* transfer matrix
 
$$
 
$$
21번째 줄: 20번째 줄:
 
$$ 
 
$$ 
  
 +
 +
==definition==
 +
* $\lambda$ : spectral parameter
 +
* $R(\lambda)$ : [[R-matrix]]
 +
* define the Lax matrix
 +
$$
 +
\begin{eqnarray}
 +
L_{0 n}(\lambda) &=& R_{0 n}(\lambda - {i\over 2}) \\
 +
&=& \left( \begin{array}{cc}
 +
\alpha_{n}        & \beta_{n}  \\
 +
\gamma_{n}        & \delta_{n}
 +
\end{array} \right)
 +
\,, \qquad n = 1 \,, 2 \,, \ldots \,, N \,,
 +
\end{eqnarray}
 +
$$
 +
where
 +
$\alpha_{n}$, $\beta_{n}$, $\gamma_{n}$, $\delta_{n}$ are
 +
operators on
 +
$$
 +
\begin{eqnarray}
 +
\stackrel{\stackrel{1}{\downarrow}}{V} \otimes \cdots \otimes
 +
\stackrel{\stackrel{n}{\downarrow}}{V} \otimes \cdots \otimes
 +
\stackrel{\stackrel{N}{\downarrow}}{V}
 +
\end{eqnarray}
 +
$$
 +
* monodromy matrix
 +
$$
 +
\begin{eqnarray}
 +
T_{0}(\lambda) &=& L_{0 N}(\lambda) \cdots L_{0 1}(\lambda) \\
 +
&=&
 +
\left(\begin{array}{cc}
 +
\alpha_{N} & \beta_{N} \\
 +
\gamma_{N} & \delta_{N}
 +
\end{array} \right)
 +
\cdots
 +
\left(\begin{array}{cc}
 +
\alpha_{1} & \beta_{1} \\
 +
\gamma_{1} & \delta_{1}
 +
\end{array} \right) \\
 +
&=&
 +
\left(
 +
\begin{array}{cc}
 +
A(\lambda ) & B(\lambda ) \\
 +
C(\lambda ) & D(\lambda )
 +
\end{array}
 +
\right)
 +
\label{monodromy}
 +
\end{eqnarray}
 +
$$
 +
where
 +
$A(\lambda ) ,B(\lambda ) , C(\lambda ) , D(\lambda )$ are operators acting on $V^{\otimes N}$
  
  
33번째 줄: 83번째 줄:
 
==related items==
 
==related items==
 
* [[RTT=TTR relation in spin chains]]
 
* [[RTT=TTR relation in spin chains]]
 
+
* [[A Spin Chain Primer]]
  
 
 
 
 

2013년 8월 19일 (월) 05:50 판

introduction

  • monodromy matrix

$$ T(\lambda)= \left( \begin{array}{cc} A(\lambda ) & B(\lambda ) \\ C(\lambda ) & D(\lambda ) \end{array} \right) $$

$$ RTT=TTR $$

  • transfer matrix

$$ t=\operatorname{tr} T=A+D $$ 


definition

  • $\lambda$ : spectral parameter
  • $R(\lambda)$ : R-matrix
  • define the Lax matrix

$$ \begin{eqnarray} L_{0 n}(\lambda) &=& R_{0 n}(\lambda - {i\over 2}) \\ &=& \left( \begin{array}{cc} \alpha_{n} & \beta_{n} \\ \gamma_{n} & \delta_{n} \end{array} \right) \,, \qquad n = 1 \,, 2 \,, \ldots \,, N \,, \end{eqnarray} $$ where $\alpha_{n}$, $\beta_{n}$, $\gamma_{n}$, $\delta_{n}$ are operators on $$ \begin{eqnarray} \stackrel{\stackrel{1}{\downarrow}}{V} \otimes \cdots \otimes \stackrel{\stackrel{n}{\downarrow}}{V} \otimes \cdots \otimes \stackrel{\stackrel{N}{\downarrow}}{V} \end{eqnarray} $$

  • monodromy matrix

$$ \begin{eqnarray} T_{0}(\lambda) &=& L_{0 N}(\lambda) \cdots L_{0 1}(\lambda) \\ &=& \left(\begin{array}{cc} \alpha_{N} & \beta_{N} \\ \gamma_{N} & \delta_{N} \end{array} \right) \cdots \left(\begin{array}{cc} \alpha_{1} & \beta_{1} \\ \gamma_{1} & \delta_{1} \end{array} \right) \\ &=& \left( \begin{array}{cc} A(\lambda ) & B(\lambda ) \\ C(\lambda ) & D(\lambda ) \end{array} \right) \label{monodromy} \end{eqnarray} $$ where $A(\lambda ) ,B(\lambda ) , C(\lambda ) , D(\lambda )$ are operators acting on $V^{\otimes N}$


history

 

 

related items